Header logo is am


2010


no image
Variable impedance control - a reinforcement learning approach

Buchli, J., Theodorou, E., Stulp, F., Schaal, S.

In Robotics Science and Systems (2010), Zaragoza, Spain, June 27-30, 2010, clmc (inproceedings)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high DOF robotic tasks. In this contribution, we accomplish such gain scheduling with a reinforcement learning approach algorithm, PI2 (Policy Improvement with Path Integrals). PI2 is a model-free, sampling based learning method derived from first principles of optimal control. The PI2 algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PI2 is that it can scale to problems of many DOFs, so that RL on real robotic systems becomes feasible. We sketch the PI2 algorithm and its theoretical properties, and how it is applied to gain scheduling. We evaluate our approach by presenting results on two different simulated robotic systems, a 3-DOF Phantom Premium Robot and a 6-DOF Kuka Lightweight Robot. We investigate tasks where the optimal strategy requires both tuning of the impedance of the end-effector, and tuning of a reference trajectory. The results show that we can use path integral based RL not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

link (url) [BibTex]

2010

link (url) [BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

DOI [BibTex]

DOI [BibTex]

1994


no image
Robot juggling: An implementation of memory-based learning

Schaal, S., Atkeson, C. G.

Control Systems Magazine, 14(1):57-71, 1994, clmc (article)

Abstract
This paper explores issues involved in implementing robot learning for a challenging dynamic task, using a case study from robot juggling. We use a memory-based local modeling approach (locally weighted regression) to represent a learned model of the task to be performed. Statistical tests are given to examine the uncertainty of a model, to optimize its prediction quality, and to deal with noisy and corrupted data. We develop an exploration algorithm that explicitly deals with prediction accuracy requirements during exploration. Using all these ingredients in combination with methods from optimal control, our robot achieves fast real-time learning of the task within 40 to 100 trials.

link (url) [BibTex]

1994

link (url) [BibTex]


no image
Robot learning by nonparametric regression

Schaal, S., Atkeson, C. G.

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS’94), pages: 478-485, Munich Germany, 1994, clmc (inproceedings)

Abstract
We present an approach to robot learning grounded on a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, i.e., the (hyper-) tangent planes at every query point. Such a model, however, is only generated when a query is performed and is not retained. This is in contrast to other methods using a finite set of linear models to accomplish a piecewise linear model. Architectural parameters of our approach, such as distance metrics, are also a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: Within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

[BibTex]

[BibTex]


no image
Assessing the quality of learned local models

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 6, pages: 160-167, (Editors: Cowan, J.;Tesauro, G.;Alspector, J.), Morgan Kaufmann, San Mateo, CA, 1994, clmc (inproceedings)

Abstract
An approach is presented to learning high dimensional functions in the case where the learning algorithm can affect the generation of new data. A local modeling algorithm, locally weighted regression, is used to represent the learned function. Architectural parameters of the approach, such as distance metrics, are also localized and become a function of the query point instead of being global. Statistical tests are given for when a local model is good enough and sampling should be moved to a new area. Our methods explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a "center of exploration" and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach with simulation results and results from a real robot learning a complex juggling task.

link (url) [BibTex]

link (url) [BibTex]


no image
Memory-based robot learning

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 2928-2933, San Diego, CA, 1994, clmc (inproceedings)

Abstract
We present a memory-based local modeling approach to robot learning using a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, the (hyper-) tangent planes at every query point. This is in contrast to other methods using a finite set of linear models to accomplish a piece-wise linear model. Architectural parameters of our approach, such as distance metrics, are a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

[BibTex]

[BibTex]


no image
Nonparametric regression for learning

Schaal, S.

In Conference on Adaptive Behavior and Learning, Center of Interdisciplinary Research (ZIF) Bielefeld Germany, also technical report TR-H-098 of the ATR Human Information Processing Research Laboratories, 1994, clmc (inproceedings)

Abstract
In recent years, learning theory has been increasingly influenced by the fact that many learning algorithms have at least in part a comprehensive interpretation in terms of well established statistical theories. Furthermore, with little modification, several statistical methods can be directly cast into learning algorithms. One family of such methods stems from nonparametric regression. This paper compares nonparametric learning with the more widely used parametric counterparts and investigates how these two families differ in their properties and their applicability. 

link (url) [BibTex]

link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]