Header logo is am


2014


no image
Wenn es was zu sagen gibt

(Klaus Tschira Award 2014 in Computer Science)

Trimpe, S.

Bild der Wissenschaft, pages: 20-23, November 2014, (popular science article in German) (article)

PDF Project Page [BibTex]

2014

PDF Project Page [BibTex]


no image
Robotics and Neuroscience

Floreano, Dario, Ijspeert, Auke Jan, Schaal, S.

Current Biology, 24(18):R910-R920, sep 2014 (article)

[BibTex]

[BibTex]


Nonmyopic View Planning for Active Object Classification and Pose Estimation
Nonmyopic View Planning for Active Object Classification and Pose Estimation

Atanasov, N., Sankaran, B., Le Ny, J., Pappas, G., Daniilidis, K.

IEEE Transactions on Robotics, May 2014, clmc (article)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of viewpoints, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and real-world experiments with the PR2 robot. The results suggest a significant improvement over static object detection

Web pdf link (url) [BibTex]

Web pdf link (url) [BibTex]


Data-Driven Grasp Synthesis - A Survey
Data-Driven Grasp Synthesis - A Survey

Bohg, J., Morales, A., Asfour, T., Kragic, D.

IEEE Transactions on Robotics, 30, pages: 289 - 309, IEEE, April 2014 (article)

Abstract
We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


no image
A Limiting Property of the Matrix Exponential

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(4):1105-1110, 2014 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Event-Based State Estimation With Variance-Based Triggering

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(12):3266-3281, 2014 (article)

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


no image
Perspective: Intelligent Systems: Bits and Bots

Spatz, J. P., Schaal, S.

Nature, (509), 2014, clmc (article)

Abstract
What is intelligence, and can we create it? Animals can perceive, reason, react and learn, but they are just one example of an intelligent system. Intelligent systems could be robots as large as humans, helping with search-and- rescue operations in dangerous places, or smart devices as tiny as a cell, delivering drugs to a target within the body. Even computing systems can be intelligent, by perceiving the world, crawling the web and processing â??big dataâ?? to extract and learn from complex information.Understanding not only how intelligence can be reproduced, but also how to build systems that put these ideas into practice, will be a challenge. Small intelligent systems will require new materials and fabrication methods, as well as com- pact information processors and power sources. And for nano-sized systems, the rules change altogether. The laws of physics operate very differently at tiny scales: for a nanorobot, swimming through water is like struggling through treacle.Researchers at the Max Planck Institute for Intelligent Systems have begun to solve these problems by developing new computational methods, experiment- ing with unique robotic systems and fabricating tiny, artificial propellers, like bacterial flagella, to propel nanocreations through their environment.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
An autonomous manipulation system based on force control and optimization

Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R. C., Sukhatme, G. S., Schaal, S.

Autonomous Robots, 36(1-2):11-30, January 2014 (article)

Abstract
In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.

Autonomous Robots, 36(1-2):51-65, January 2014 (article)

Abstract
The ability to grasp unknown objects still remains an unsolved problem in the robotics community. One of the challenges is to choose an appropriate grasp configuration, i.e., the 6D pose of the hand relative to the object and its finger configuration. In this paper, we introduce an algorithm that is based on the assumption that similarly shaped objects can be grasped in a similar way. It is able to synthesize good grasp poses for unknown objects by finding the best matching object shape templates associated with previously demonstrated grasps. The grasp selection algorithm is able to improve over time by using the information of previous grasp attempts to adapt the ranking of the templates to new situations. We tested our approach on two different platforms, the Willow Garage PR2 and the Barrett WAM robot, which have very different hand kinematics. Furthermore, we compared our algorithm with other grasp planners and demonstrated its superior performance. The results presented in this paper show that the algorithm is able to find good grasp configurations for a large set of unknown objects from a relatively small set of demonstrations, and does improve its performance over time.

link (url) DOI [BibTex]

2012


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

2012

Project Page [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]

2011


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

[BibTex]

2011

[BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

link (url) [BibTex]

link (url) [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

link (url) [BibTex]

link (url) [BibTex]


no image
Understanding haptics by evolving mechatronic systems

Loeb, G. E., Tsianos, G.A., Fishel, J.A., Wettels, N., Schaal, S.

Progress in Brain Research, 192, pages: 129, 2011 (article)

[BibTex]

[BibTex]


no image
Intelligent Mobility—Autonomous Outdoor Robotics at the DFKI

Joyeux, S., Schwendner, J., Kirchner, F., Babu, A., Grimminger, F., Machowinski, J., Paranhos, P., Gaudig, C.

KI, 25(2):133-139, May 2011 (article)

DOI [BibTex]

DOI [BibTex]

2010


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

link (url) [BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

PDF [BibTex]

PDF [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

PDF [BibTex]

PDF [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2004


no image
Discovering optimal imitation strategies

Billard, A., Epars, Y., Calinon, S., Cheng, G., Schaal, S.

Robotics and Autonomous Systems, 47(2-3):68-77, 2004, clmc (article)

Abstract
This paper develops a general policy for learning relevant features of an imitation task. We restrict our study to imitation of manipulative tasks or of gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different imitative tasks and controls task reproduction by a full body humanoid robot.

[BibTex]

2004

[BibTex]


no image
Rhythmic movement is not discrete

Schaal, S., Sternad, D., Osu, R., Kawato, M.

Nature Neuroscience, 7(10):1137-1144, 2004, clmc (article)

Abstract
Rhythmic movements, like walking, chewing, or scratching, are phylogenetically old mo-tor behaviors found in many organisms, ranging from insects to primates. In contrast, discrete movements, like reaching, grasping, or kicking, are behaviors that have reached sophistication primarily in younger species, particularly in primates. Neurophysiological and computational research on arm motor control has focused almost exclusively on dis-crete movements, essentially assuming similar neural circuitry for rhythmic tasks. In con-trast, many behavioral studies focused on rhythmic models, subsuming discrete move-ment as a special case. Here, using a human functional neuroimaging experiment, we show that in addition to areas activated in rhythmic movement, discrete movement in-volves several higher cortical planning areas, despite both movement conditions were confined to the same single wrist joint. These results provide the first neuroscientific evi-dence that rhythmic arm movement cannot be part of a more general discrete movement system, and may require separate neurophysiological and theoretical treatment.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from demonstration and adaptation of biped locomotion

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

Robotics and Autonomous Systems, 47(2-3):79-91, 2004, clmc (article)

Abstract
In this paper, we introduce a framework for learning biped locomotion using dynamical movement primitives based on non-linear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithmbased on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotioncontroller.

link (url) [BibTex]

link (url) [BibTex]


no image
Feedback error learning and nonlinear adaptive control

Nakanishi, J., Schaal, S.

Neural Networks, 17(10):1453-1465, 2004, clmc (article)

Abstract
In this paper, we present our theoretical investigations of the technique of feedback error learning (FEL) from the viewpoint of adaptive control. We first discuss the relationship between FEL and nonlinear adaptive control with adaptive feedback linearization, and show that FEL can be interpreted as a form of nonlinear adaptive control. Second, we present a Lyapunov analysis suggesting that the condition of strictly positive realness (SPR) associated with the tracking error dynamics is a sufficient condition for asymptotic stability of the closed-loop dynamics. Specifically, for a class of second order SISO systems, we show that this condition reduces to KD^2 > KP; where KP and KD are positive position and velocity feedback gains, respectively. Moreover, we provide a ÔpassivityÕ-based stability analysis which suggests that SPR of the tracking error dynamics is a necessary and sufficient condition for asymptotic hyperstability. Thus, the condition KD^2>KP mentioned above is not only a sufficient but also necessary condition to guarantee asymptotic hyperstability of FEL, i.e. the tracking error is bounded and asymptotically converges to zero. As a further point, we explore the adaptive control and FEL framework for feedforward control formulations, and derive an additional sufficient condition for asymptotic stability in the sense of Lyapunov. Finally, we present numerical simulations to illustrate the stability properties of FEL obtained from our mathematical analysis.

link (url) [BibTex]

link (url) [BibTex]

2003


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

link (url) [BibTex]

2003

link (url) [BibTex]

2001


no image
Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

Journal of the Robotics Society of Japan, 19(1):116-123, 2001, clmc (article)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

[BibTex]

2001

[BibTex]


no image
Origins and violations of the 2/3 power law in rhythmic 3D movements

Schaal, S., Sternad, D.

Experimental Brain Research, 136, pages: 60-72, 2001, clmc (article)

Abstract
The 2/3 power law, the nonlinear relationship between tangential velocity and radius of curvature of the endeffector trajectory, has been suggested as a fundamental constraint of the central nervous system in the formation of rhythmic endpoint trajectories. However, studies on the 2/3 power law have largely been confined to planar drawing patterns of relatively small size. With the hypothesis that this strategy overlooks nonlinear effects that are constitutive in movement generation, the present experiments tested the validity of the power law in elliptical patterns which were not confined to a planar surface and which were performed by the unconstrained 7-DOF arm with significant variations in pattern size and workspace orientation. Data were recorded from five human subjects where the seven joint angles and the endpoint trajectories were analyzed. Additionally, an anthropomorphic 7-DOF robot arm served as a "control subject" whose endpoint trajectories were generated on the basis of the human joint angle data, modeled as simple harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power law is systematically violated with increasing pattern size, in both exponent and the goodness of fit. The origins of these violations can be explained analytically based on smooth rhythmic trajectory formation and the kinematic structure of the human arm. We conclude that in unconstrained rhythmic movements, the power law seems to be a by-product of a movement system that favors smooth trajectories, and that it is unlikely to serve as a primary movement generating principle. Our data rather suggests that subjects employed smooth oscillatory pattern generators in joint space to realize the required movement patterns.

link (url) [BibTex]

link (url) [BibTex]


no image
Graph-matching vs. entropy-based methods for object detection
Neural Networks, 14(3):345-354, 2001, clmc (article)

Abstract
Labeled Graph Matching (LGM) has been shown successful in numerous ob-ject vision tasks. This method is the basis for arguably the best face recognition system in the world. We present an algorithm for visual pattern recognition that is an extension of LGM ("LGM+"). We compare the performance of LGM and LGM+ algorithms with a state of the art statistical method based on Mutual Information Maximization (MIM). We present an adaptation of the MIM method for multi-dimensional Gabor wavelet features. The three pattern recognition methods were evaluated on an object detection task, using a set of stimuli on which none of the methods had been tested previously. The results indicate that while the performance of the MIM method operating upon Gabor wavelets is superior to the same method operating on pixels and to LGM, it is surpassed by LGM+. LGM+ offers a significant improvement in performance over LGM without losing LGMâ??s virtues of simplicity, biological plausibility, and a computational cost that is 2-3 orders of magnitude lower than that of the MIM algorithm. 

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic gaze stabilization based on feedback-error learning with nonparametric regression networks

Shibata, T., Schaal, S.

Neural Networks, 14(2):201-216, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e. the stabilization of gaze in face of unknown perturbations of the body, selective attention, stereo vision, and dealing with large information processing delays. Given the nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate control of these behaviors through learning approaches. This paper develops a learning control system for the phylogenetically oldest behaviors of oculomotor control, the stabilization reflexes of gaze. In a step-wise procedure, we demonstrate how control theoretic reasonable choices of control components result in an oculomotor control system that resembles the known functional anatomy of the primate oculomotor system. The core of the learning system is derived from the biologically inspired principle of feedback-error learning combined with a state-of-the-art non-parametric statistical learning network. With this circuitry, we demonstrate that our humanoid robot is able to acquire high performance visual stabilization reflexes after about 40 s of learning despite significant nonlinearities and processing delays in the system.

link (url) [BibTex]


no image
Fast learning of biomimetic oculomotor control with nonparametric regression networks (in Japanese)

Shibata, T., Schaal, S.

Journal of the Robotics Society of Japan, 19(4):468-479, 2001, clmc (article)

[BibTex]

[BibTex]


no image
Bouncing a ball: Tuning into dynamic stability

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Journal of Experimental Psychology: Human Perception and Performance, 27(5):1163-1184, 2001, clmc (article)

Abstract
Rhythmically bouncing a ball with a racket was investigated and modeled with a nonlinear map. Model analyses provided a variable defining a dynamically stable solution that obviates computationally expensive corrections. Three experiments evaluated whether dynamic stability is optimized and what perceptual support is necessary for stable behavior. Two hypotheses were tested: (a) Performance is stable if racket acceleration is negative at impact, and (b) variability is lowest at an impact acceleration between -4 and -1 m/s2. In Experiment 1 participants performed the task, eyes open or closed, bouncing a ball confined to a 1-dimensional trajectory. Experiment 2 eliminated constraints on racket and ball trajectory. Experiment 3 excluded visual or haptic information. Movements were performed with negative racket accelerations in the range of highest stability. Performance with eyes closed was more variable, leaving acceleration unaffected. With haptic information, performance was more stable than with visual information alone.

[BibTex]

[BibTex]


no image
Biomimetic oculomotor control

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

Adaptive Behavior, 9(3/4):189-207, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., capturing targets accurately on a very narrow fovea, dealing with large delays in the control system, the stabilization of gaze in face of unknown perturbations of the body, selective attention, and the complexity of stereo vision. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors and their integration - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors and the mechanism for their integration was derived with inspiration from computational theories as well as behavioral and physiological data in neuroscience. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Conversely, insights gained from our models have been able to directly influence views and provide new directions for computational neuroscience research.

link (url) [BibTex]

link (url) [BibTex]

1999


no image
Is imitation learning the route to humanoid robots?

Schaal, S.

Trends in Cognitive Sciences, 3(6):233-242, 1999, clmc (article)

Abstract
This review will focus on two recent developments in artificial intelligence and neural computation: learning from imitation and the development of humanoid robots. It will be postulated that the study of imitation learning offers a promising route to gain new insights into mechanisms of perceptual motor control that could ultimately lead to the creation of autonomous humanoid robots. This hope is justified because imitation learning channels research efforts towards three important issues: efficient motor learning, the connection between action and perception, and modular motor control in form of movement primitives. In order to make these points, first, a brief review of imitation learning will be given from the view of psychology and neuroscience. In these fields, representations and functional connections between action and perception have been explored that contribute to the understanding of motor acts of other beings. The recent discovery that some areas in the primate brain are active during both movement perception and execution provided a first idea of the possible neural basis of imitation. Secondly, computational approaches to imitation learning will be described, initially from the perspective of traditional AI and robotics, and then with a focus on neural network models and statistical learning research. Parallels and differences between biological and computational approaches to imitation will be highlighted. The review will end with an overview of current projects that actually employ imitation learning for humanoid robots.

link (url) [BibTex]

1999

link (url) [BibTex]


no image
Segmentation of endpoint trajectories does not imply segmented control

Sternad, D., Schaal, D.

Experimental Brain Research, 124(1):118-136, 1999, clmc (article)

Abstract
While it is generally assumed that complex movements consist of a sequence of simpler units, the quest to define these units of action, or movement primitives, still remains an open question. In this context, two hypotheses of movement segmentation of endpoint trajectories in 3D human drawing movements are re-examined: (1) the stroke-based segmentation hypothesis based on the results that the proportionality coefficient of the 2/3 power law changes discontinuously with each new â??strokeâ?, and (2) the segmentation hypothesis inferred from the observation of piecewise planar endpoint trajectories of 3D drawing movements. In two experiments human subjects performed a set of elliptical and figure-8 patterns of different sizes and orientations using their whole arm in 3D. The kinematic characteristics of the endpoint trajectories and the seven joint angles of the arm were analyzed. While the endpoint trajectories produced similar segmentation features as reported in the literature, analyses of the joint angles show no obvious segmentation but rather continuous oscillatory patterns. By approximating the joint angle data of human subjects with sinusoidal trajectories, and by implementing this model on a 7-degree-of-freedom anthropomorphic robot arm, it is shown that such a continuous movement strategy can produce exactly the same features as observed by the above segmentation hypotheses. The origin of this apparent segmentation of endpoint trajectories is traced back to the nonlinear transformations of the forward kinematics of human arms. The presented results demonstrate that principles of discrete movement generation may not be reconciled with those of rhythmic movement as easily as has been previously suggested, while the generalization of nonlinear pattern generators to arm movements can offer an interesting alternative to approach the question of units of action.

link (url) [BibTex]

link (url) [BibTex]

1996


no image
A Kendama learning robot based on bi-directional theory

Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., Kawato, M.

Neural Networks, 9(8):1281-1302, 1996, clmc (article)

Abstract
A general theory of movement-pattern perception based on bi-directional theory for sensory-motor integration can be used for motion capture and learning by watching in robotics. We demonstrate our methods using the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has a very similar kinematic structure to the human arm. Three ingredients have to be integrated for the successful execution of this task. The ingredients are (1) to extract via-points from a human movement trajectory using a forward-inverse relaxation model, (2) to treat via-points as a control variable while reconstructing the desired trajectory from all the via-points, and (3) to modify the via-points for successful execution. In order to test the validity of the via-point representation, we utilized a numerical model of the SARCOS arm, and examined the behavior of the system under several conditions.

link (url) [BibTex]

1996

link (url) [BibTex]


no image
One-handed juggling: A dynamical approach to a rhythmic movement task

Schaal, S., Sternad, D., Atkeson, C. G.

Journal of Motor Behavior, 28(2):165-183, 1996, clmc (article)

Abstract
The skill of rhythmic juggling a ball on a racket is investigated from the viewpoint of nonlinear dynamics. The difference equations that model the dynamical system are analyzed by means of local and non-local stability analyses. These analyses yield that the task dynamics offer an economical juggling pattern which is stable even for open-loop actuator motion. For this pattern, two types of pre dictions are extracted: (i) Stable periodic bouncing is sufficiently characterized by a negative acceleration of the racket at the moment of impact with the ball; (ii) A nonlinear scaling relation maps different juggling trajectories onto one topologically equivalent dynamical system. The relevance of these results for the human control of action was evaluated in an experiment where subjects performed a comparable task of juggling a ball on a paddle. Task manipulations involved different juggling heights and gravity conditions of the ball. The predictions were confirmed: (i) For stable rhythmic performance the paddle's acceleration at impact is negative and fluctuations of the impact acceleration follow predictions from global stability analysis; (ii) For each subject, the realizations of juggling for the different experimental conditions are related by the scaling relation. These results allow the conclusion that for the given task, humans reliably exploit the stable solutions inherent to the dynamics of the task and do not overrule these dynamics by other control mechanisms. The dynamical scaling serves as an efficient principle to generate different movement realizations from only a few parameter changes and is discussed as a dynamical formalization of the principle of motor equivalence.

link (url) [BibTex]

link (url) [BibTex]

1994


no image
Robot juggling: An implementation of memory-based learning

Schaal, S., Atkeson, C. G.

Control Systems Magazine, 14(1):57-71, 1994, clmc (article)

Abstract
This paper explores issues involved in implementing robot learning for a challenging dynamic task, using a case study from robot juggling. We use a memory-based local modeling approach (locally weighted regression) to represent a learned model of the task to be performed. Statistical tests are given to examine the uncertainty of a model, to optimize its prediction quality, and to deal with noisy and corrupted data. We develop an exploration algorithm that explicitly deals with prediction accuracy requirements during exploration. Using all these ingredients in combination with methods from optimal control, our robot achieves fast real-time learning of the task within 40 to 100 trials.

link (url) [BibTex]

1994

link (url) [BibTex]