Header logo is am


2012


no image
The Balancing Cube: A Dynamic Sculpture as Test Bed for Distributed Estimation and Control

Trimpe, S., D’Andrea, R.

IEEE Control Systems Magazine, 32(6):48-75, December 2012 (article)

DOI [BibTex]

2012

DOI [BibTex]


Visual Servoing on Unknown Objects
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions
Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions

Gruebler, A., Berenz, V., Suzuki, K.

Advanced Robotics, 26(10):1143-1159, 2012 (article)

link (url) DOI [BibTex]


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

Project Page [BibTex]


Autonomous battery management for mobile robots based on risk and gain assessment
Autonomous battery management for mobile robots based on risk and gain assessment

Berenz, V., Tanaka, F., Suzuki, K.

Artif. Intell. Rev., 37(3):217-237, 2012 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]

2011


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

[BibTex]

2011

[BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

link (url) [BibTex]

link (url) [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

link (url) [BibTex]

link (url) [BibTex]


no image
Understanding haptics by evolving mechatronic systems

Loeb, G. E., Tsianos, G.A., Fishel, J.A., Wettels, N., Schaal, S.

Progress in Brain Research, 192, pages: 129, 2011 (article)

[BibTex]

[BibTex]


no image
Intelligent Mobility—Autonomous Outdoor Robotics at the DFKI

Joyeux, S., Schwendner, J., Kirchner, F., Babu, A., Grimminger, F., Machowinski, J., Paranhos, P., Gaudig, C.

KI, 25(2):133-139, May 2011 (article)

DOI [BibTex]

DOI [BibTex]

2007


no image
The new robotics - towards human-centered machines

Schaal, S.

HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115-126, 2007, clmc (article)

Abstract
Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research instiutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

link (url) [BibTex]

2007

link (url) [BibTex]

2002


no image
Forward models in visuomotor control

Mehta, B., Schaal, S.

J Neurophysiol, 88(2):942-53, August 2002, clmc (article)

Abstract
In recent years, an increasing number of research projects investigated whether the central nervous system employs internal models in motor control. While inverse models in the control loop can be identified more readily in both motor behavior and the firing of single neurons, providing direct evidence for the existence of forward models is more complicated. In this paper, we will discuss such an identification of forward models in the context of the visuomotor control of an unstable dynamic system, the balancing of a pole on a finger. Pole balancing imposes stringent constraints on the biological controller, as it needs to cope with the large delays of visual information processing while keeping the pole at an unstable equilibrium. We hypothesize various model-based and non-model-based control schemes of how visuomotor control can be accomplished in this task, including Smith Predictors, predictors with Kalman filters, tapped-delay line control, and delay-uncompensated control. Behavioral experiments with human participants allow exclusion of most of the hypothesized control schemes. In the end, our data support the existence of a forward model in the sensory preprocessing loop of control. As an important part of our research, we will provide a discussion of when and how forward models can be identified and also the possible pitfalls in the search for forward models in control.

link (url) [BibTex]

2002

link (url) [BibTex]


no image
Scalable techniques from nonparameteric statistics for real-time robot learning

Schaal, S., Atkeson, C. G., Vijayakumar, S.

Applied Intelligence, 17(1):49-60, 2002, clmc (article)

Abstract
Locally weighted learning (LWL) is a class of techniques from nonparametric statistics that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional belief that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested on up to 90 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing by a humanoid robot arm, and inverse-dynamics learning for a seven and a 30 degree-of-freedom robot. In all these examples, the application of our statistical neural networks techniques allowed either faster or more accurate acquisition of motor control than classical control engineering.

link (url) [BibTex]

link (url) [BibTex]

1996


no image
A Kendama learning robot based on bi-directional theory

Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., Kawato, M.

Neural Networks, 9(8):1281-1302, 1996, clmc (article)

Abstract
A general theory of movement-pattern perception based on bi-directional theory for sensory-motor integration can be used for motion capture and learning by watching in robotics. We demonstrate our methods using the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has a very similar kinematic structure to the human arm. Three ingredients have to be integrated for the successful execution of this task. The ingredients are (1) to extract via-points from a human movement trajectory using a forward-inverse relaxation model, (2) to treat via-points as a control variable while reconstructing the desired trajectory from all the via-points, and (3) to modify the via-points for successful execution. In order to test the validity of the via-point representation, we utilized a numerical model of the SARCOS arm, and examined the behavior of the system under several conditions.

link (url) [BibTex]

1996

link (url) [BibTex]


no image
One-handed juggling: A dynamical approach to a rhythmic movement task

Schaal, S., Sternad, D., Atkeson, C. G.

Journal of Motor Behavior, 28(2):165-183, 1996, clmc (article)

Abstract
The skill of rhythmic juggling a ball on a racket is investigated from the viewpoint of nonlinear dynamics. The difference equations that model the dynamical system are analyzed by means of local and non-local stability analyses. These analyses yield that the task dynamics offer an economical juggling pattern which is stable even for open-loop actuator motion. For this pattern, two types of pre dictions are extracted: (i) Stable periodic bouncing is sufficiently characterized by a negative acceleration of the racket at the moment of impact with the ball; (ii) A nonlinear scaling relation maps different juggling trajectories onto one topologically equivalent dynamical system. The relevance of these results for the human control of action was evaluated in an experiment where subjects performed a comparable task of juggling a ball on a paddle. Task manipulations involved different juggling heights and gravity conditions of the ball. The predictions were confirmed: (i) For stable rhythmic performance the paddle's acceleration at impact is negative and fluctuations of the impact acceleration follow predictions from global stability analysis; (ii) For each subject, the realizations of juggling for the different experimental conditions are related by the scaling relation. These results allow the conclusion that for the given task, humans reliably exploit the stable solutions inherent to the dynamics of the task and do not overrule these dynamics by other control mechanisms. The dynamical scaling serves as an efficient principle to generate different movement realizations from only a few parameter changes and is discussed as a dynamical formalization of the principle of motor equivalence.

link (url) [BibTex]

link (url) [BibTex]

1992


no image
Ins CAD integrierte Kostenkalkulation (CAD-Integrated Cost Calculation)

Ehrlenspiel, K., Schaal, S.

Konstruktion 44, 12, pages: 407-414, 1992, clmc (article)

[BibTex]

1992

[BibTex]