Header logo is am


2012


no image
The Balancing Cube: A Dynamic Sculpture as Test Bed for Distributed Estimation and Control

Trimpe, S., D’Andrea, R.

IEEE Control Systems Magazine, 32(6):48-75, December 2012 (article)

DOI [BibTex]

2012

DOI [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 11.48.38 am
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Thumb xl nao2
Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions

Gruebler, A., Berenz, V., Suzuki, K.

Advanced Robotics, 26(10):1143-1159, 2012 (article)

link (url) DOI [BibTex]


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl battery
Autonomous battery management for mobile robots based on risk and gain assessment

Berenz, V., Tanaka, F., Suzuki, K.

Artif. Intell. Rev., 37(3):217-237, 2012 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]

2009


Thumb xl screen shot 2015 08 23 at 15.10.20
Towards Grasp-Oriented Visual Perception of Humanoid Robots

Bohg, J., Barck-Holst, C., Huebner, K., Ralph, M., Rasolzadeh, B., Song, D., Kragic, D.

International Journal of Humanoid Robotics, 06(03):387-434, 2009 (article)

Abstract
A distinct property of robot vision systems is that they are embodied. Visual information is extracted for the purpose of moving in and interacting with the environment. Thus, different types of perception-action cycles need to be implemented and evaluated. In this paper, we study the problem of designing a vision system for the purpose of object grasping in everyday environments. This vision system is firstly targeted at the interaction with the world through recognition and grasping of objects and secondly at being an interface for the reasoning and planning module to the real world. The latter provides the vision system with a certain task that drives it and defines a specific context, i.e. search for or identify a certain object and analyze it for potential later manipulation. We deal with cases of: (i) known objects, (ii) objects similar to already known objects, and (iii) unknown objects. The perception-action cycle is connected to the reasoning system based on the idea of affordances. All three cases are also related to the state of the art and the terminology in the neuroscientific area.

pdf DOI [BibTex]

2009

pdf DOI [BibTex]


Valero-Cuevas, F., Hoffmann, H., Kurse, M. U., Kutch, J. J., Theodorou, E. A.

IEEE Reviews in Biomedical Engineering – (All authors have equally contributed), (2):110?135, 2009, clmc (article)

Abstract
Computational models of the neuromuscular system hold the potential to allow us to reach a deeper understanding of neuromuscular function and clinical rehabilitation by complementing experimentation. By serving as a means to distill and explore specific hypotheses, computational models emerge from prior experimental data and motivate future experimental work. Here we review computational tools used to understand neuromuscular function including musculoskeletal modeling, machine learning, control theory, and statistical model analysis. We conclude that these tools, when used in combination, have the potential to further our understanding of neuromuscular function by serving as a rigorous means to test scientific hypotheses in ways that complement and leverage experimental data.

link (url) [BibTex]

link (url) [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for non-parametric regression

Hoffman, H., Schaal, S., Vijayakumar, S.

Neural Processing Letters, 2009, clmc (article)

Abstract
Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on nonparametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly.

link (url) [BibTex]

link (url) [BibTex]


no image
Incorporating Muscle Activation-Contraction dynamics to an optimal control framework for finger movements

Theodorou, Evangelos A., Valero-Cuevas, Francisco J.

Abstracts of Neural Control of Movement Conference (NCM 2009), 2009, clmc (article)

Abstract
Recent experimental and theoretical work [1] investigated the neural control of contact transition between motion and force during tapping with the index finger as a nonlinear optimization problem. Such transitions from motion to well-directed contact force are a fundamental part of dexterous manipulation. There are 3 alternative hypotheses of how this transition could be accomplished by the nervous system as a function of changes in direction and magnitude of the torque vector controlling the finger. These hypotheses are 1) an initial change in direction with a subsequent change in magnitude of the torque vector; 2) an initial change in magnitude with a subsequent directional change of the torque vector; and 3) a simultaneous and proportionally equal change of both direction and magnitude of the torque vector. Experimental work in [2] shows that the nervous system selects the first strategy, and in [1] we suggest that this may in fact be the optimal strategy. In [4] the framework of Iterative Linear Quadratic Optimal Regulator (ILQR) was extended to incorporate motion and force control. However, our prior simulation work assumed direct and instantaneous control of joint torques, which ignores the known delays and filtering properties of skeletal muscle. In this study, we implement an ILQR controller for a more biologically plausible biomechanical model of the index finger than [4], and add activation-contraction dynamics to the system to simulate muscle function. The planar biomechanical model includes the kinematics of the 3 joints while the applied torques are driven by activation?contraction dynamics with biologically plausible time constants [3]. In agreement with our experimental work [2], the task is to, within 500 ms, move the finger from a given resting configuration to target configuration with a desired terminal velocity. ILQR does not only stabilize the finger dynamics according to the objective function, but it also generates smooth joint space trajectories with minimal tuning and without an a-priori initial control policy (which is difficult to find for highly dimensional biomechanical systems). Furthemore, the use of this optimal control framework and the addition of activation-contraction dynamics considers the full nonlinear dynamics of the index finger and produces a sequence of postures which are compatible with experimental motion data [2]. These simulations combined with prior experimental results suggest that optimal control is a strong candidate for the generation of finger movements prior to abrupt motion-to-force transitions. This work is funded in part by grants NIH R01 0505520 and NSF EFRI-0836042 to Dr. Francisco J. Valero- Cuevas 1 Venkadesan M, Valero-Cuevas FJ. 
Effects of neuromuscular lags on controlling contact transitions. 
Philosophical Transactions of the Royal Society A: 2008. 2 Venkadesan M, Valero-Cuevas FJ. 
Neural Control of Motion-to-Force Transitions with the Fingertip. 
J. Neurosci., Feb 2008; 28: 1366 - 1373; 3 Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17 4. Weiwei Li., Francisco Valero Cuevas: ?Linear Quadratic Optimal Control of Contact Transition with Fingertip ? ACC 2009

PDF [BibTex]

PDF [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

link (url) [BibTex]

link (url) [BibTex]

2005


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

link (url) [BibTex]

2005

link (url) [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

PDF [BibTex]

PDF [BibTex]

1993


no image
Design concurrent calculation: A CAD- and data-integrated approach

Schaal, S., Ehrlenspiel, K.

Journal of Engineering Design, 4, pages: 71-85, 1993, clmc (article)

Abstract
Besides functional regards, product design demands increasingly more for further reaching considerations. Quality alone cannot suffice anymore to compete in the market; design for manufacturability, for assembly, for recycling, etc., are well-known keywords. Those can largely be reduced to the necessity of design for costs. This paper focuses on a CAD-based approach to design concurrent calculation. It will discuss how, in the meantime well-established, tools like feature technology, knowledge-based systems, and relational databases can be blended into one coherent concept to achieve an entirely CAD- and data-integrated cost information tool. This system is able to extract data from the CAD-system, combine it with data about the company specific manufacturing environment, and subsequently autonomously evaluate manufacturability aspects and costs of the given CAD-model. Within minutes the designer gets quantitative in-formation about the major cost sources of his/her design. Additionally, some alternative methods for approximating manu-facturing times from empirical data, namely neural networks and local weighted regression, are introduced.

[BibTex]

1993

[BibTex]