Header logo is am


2018


Thumb xl screen shot 2018 04 19 at 14.57.08
Motion-based Object Segmentation based on Dense RGB-D Scene Flow

Shao, L., Shah, P., Dwaracherla, V., Bohg, J.

IEEE Robotics and Automation Letters, 3(4):3797-3804, IEEE, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2018 (conference)

Abstract
Given two consecutive RGB-D images, we propose a model that estimates a dense 3D motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes often consist of a set of rigidly moving objects. Our model jointly estimates (i) the segmentation of the scene into an unknown but finite number of objects, (ii) the motion trajectories of these objects and (iii) the object scene flow. We employ an hourglass, deep neural network architecture. In the encoding stage, the RGB and depth images undergo spatial compression and correlation. In the decoding stage, the model outputs three images containing a per-pixel estimate of the corresponding object center as well as object translation and rotation. This forms the basis for inferring the object segmentation and final object scene flow. To evaluate our model, we generated a new and challenging, large-scale, synthetic dataset that is specifically targeted at robotic manipulation: It contains a large number of scenes with a very diverse set of simultaneously moving 3D objects and is recorded with a commonly-used RGB-D camera. In quantitative experiments, we show that we significantly outperform state-of-the-art scene flow and motion-segmentation methods. In qualitative experiments, we show how our learned model transfers to challenging real-world scenes, visually generating significantly better results than existing methods.

Project Page arXiv DOI [BibTex]

2018

Project Page arXiv DOI [BibTex]


Thumb xl teaser image
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Thumb xl meta learning overview
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

pdf video code [BibTex]

pdf video code [BibTex]


Thumb xl learning ct w asm block diagram detailed
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2012


Thumb xl screen shot 2015 08 23 at 13.56.29
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

DOI [BibTex]

2012

DOI [BibTex]


Thumb xl sankaran iros 20121
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl bottlehandovergrasp
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


no image
Movement Segmentation and Recognition for Imitation Learning

Meier, F., Theodorou, E., Schaal, S.

In Seventeenth International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, Fifteenth International Conference on Artificial Intelligence and Statistics , April 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Event-based State Estimation with Switching Static-gain Observers

Trimpe, S.

In Proceedings of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl nao
Usability benchmarks of the Targets-Drives-Means robotic architecture

Berenz, V., Suzuki, K.

In 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, Japan, November 29 - Dec. 1, 2012, pages: 514-519, 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based State Estimation with Variance-Based Triggering

Trimpe, S., D’Andrea, R.

In Proceedings of the 51st IEEE Conference on Decision and Control, 2012 (inproceedings)

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


no image
Inverse dynamics with optimal distribution of contact forces for the control of legged robots

Righetti, L., Schaal, S.

In Dynamic Walking 2012, Pensacola, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Encoding of Periodic and their Transient Motions by a Single Dynamic Movement Primitive

Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 57-64, IEEE, Osaka, Japan, November 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Robotic Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In ICML’12 Proceedings of the 29th International Coference on International Conference on Machine Learning, pages: 49-50, Edinburgh, Scotland, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Quadratic programming for inverse dynamics with optimal distribution of contact forces

Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 538-543, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In addition the controller satisfies linear equality and inequality constraints in the contact forces and the commands such as torque limits, unilateral contacts or friction cones limits. The originality of our approach resides in the formulation of the problem as a quadratic program where we only need to solve for the control commands and where the contact forces are optimized implicitly. Furthermore, we do not need a structured representation of the dynamics of the robot (i.e. an explicit computation of the inertia matrix). It is in contrast with existing methods based on quadratic programs. The controller is then robust to uncertainty in the estimation of the dynamics model and the optimization is fast enough to be implemented in high bandwidth torque control loops that are increasingly available on humanoid platforms. We demonstrate properties of our controller with simulations of a human size humanoid robot.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2001


no image
Humanoid oculomotor control based on concepts of computational neuroscience

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

In Humanoids2001, Second IEEE-RAS International Conference on Humanoid Robots, 2001, clmc (inproceedings)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., the stabilization of gaze in face of unknown perturbations of the body, selective attention, the complexity of stereo vision and dealing with large information processing delays. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors was derived from inspirations from computational neuroscience, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors that appears natural and human-like.

link (url) [BibTex]

2001

link (url) [BibTex]


no image
Trajectory formation for imitation with nonlinear dynamical systems

Ijspeert, A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), pages: 752-757, Weilea, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
This article explores a new approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system (TFS) in the context of a humanoid robot simulation that is part of the Virtual Trainer (VT) project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multi-joint human movements can be encoded successfully, and that this system allows robust modifications of the movement policy through external variables.

link (url) [BibTex]

link (url) [BibTex]


no image
Real-time statistical learning for robotics and human augmentation

Schaal, S., Vijayakumar, S., D’Souza, A., Ijspeert, A., Nakanishi, J.

In International Symposium on Robotics Research, (Editors: Jarvis, R. A.;Zelinsky, A.), Lorne, Victoria, Austrialia Nov.9-12, 2001, clmc (inproceedings)

Abstract
Real-time modeling of complex nonlinear dynamic processes has become increasingly important in various areas of robotics and human augmentation. To address such problems, we have been developing special statistical learning methods that meet the demands of on-line learning, in particular the need for low computational complexity, rapid learning, and scalability to high-dimensional spaces. In this paper, we introduce a novel algorithm that possesses all the necessary properties by combining methods from probabilistic and nonparametric learning. We demonstrate the applicability of our methods for three different applications in humanoid robotics, i.e., the on-line learning of a full-body inverse dynamics model, an inverse kinematics model, and imitation learning. The latter application will also introduce a novel method to shape attractor landscapes of dynamical system by means of statis-tical learning.

link (url) [BibTex]

link (url) [BibTex]


no image
Robust learning of arm trajectories through human demonstration

Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
We present a model, composed of hierarchy of artificial neural networks, for robot learning by demonstration. The model is implemented in a dynamic simulation of a 41 degrees of freedom humanoid for reproducing 3D human motion of the arm. Results show that the model requires few information about the desired trajectory and learns on-line the relevant features of movement. It can generalize across a small set of data to produce a qualitatively good reproduction of the demonstrated trajectory. Finally, it is shown that reproduction of the trajectory after learning is robust against perturbations.

link (url) [BibTex]

link (url) [BibTex]


no image
Overt visual attention for a humanoid robot

Vijayakumar, S., Conradt, J., Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
The goal of our research is to investigate the interplay between oculomotor control, visual processing, and limb control in humans and primates by exploring the computational issues of these processes with a biologically inspired artificial oculomotor system on an anthropomorphic robot. In this paper, we investigate the computational mechanisms for visual attention in such a system. Stimuli in the environment excite a dynamical neural network that implements a saliency map, i.e., a winner-take-all competition between stimuli while simultenously smoothing out noise and suppressing irrelevant inputs. In real-time, this system computes new targets for the shift of gaze, executed by the head-eye system of the robot. The redundant degrees-of- freedom of the head-eye system are resolved through a learned inverse kinematics with optimization criterion. We also address important issues how to ensure that the coordinate system of the saliency map remains correct after movement of the robot. The presented attention system is built on principled modules and generally applicable for any sensory modality.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning inverse kinematics

D’Souza, A., Vijayakumar, S., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates learning of inverse kinematics for resolved motion rate control (RMRC) employing an optimization criterion to resolve kinematic redundancies. Our learning approach is based on the key observations that learning an inverse of a non uniquely invertible function can be accomplished by augmenting the input representation to the inverse model and by using a spatially localized learning approach. We apply this strategy to inverse kinematics learning and demonstrate how a recently developed statistical learning algorithm, Locally Weighted Projection Regression, allows efficient learning of inverse kinematic mappings in an incremental fashion even when input spaces become rather high dimensional. The resulting performance of the inverse kinematics is comparable to Liegeois ([1]) analytical pseudo inverse with optimization. Our results are illustrated with a 30 degree-of-freedom humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic smooth pursuit based on fast learning of the target dynamics

Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
Following a moving target with a narrow-view foveal vision system is one of the essential oculomotor behaviors of humans and humanoids. This oculomotor behavior, called ``Smooth Pursuit'', requires accurate tracking control which cannot be achieved by a simple visual negative feedback controller due to the significant delays in visual information processing. In this paper, we present a biologically inspired and control theoretically sound smooth pursuit controller consisting of two cascaded subsystems. One is an inverse model controller for the oculomotor system, and the other is a learning controller for the dynamics of the visual target. The latter controller learns how to predict the target's motion in head coordinates such that tracking performance can be improved. We investigate our smooth pursuit system in simulations and experiments on a humanoid robot. By using a fast on-line statistical learning network, our humanoid oculomotor system is able to acquire high performance smooth pursuit after about 5 seconds of learning despite significant processing delays in the syste

link (url) [BibTex]

link (url) [BibTex]