Header logo is am


2017


Thumb xl robot legos
Interactive Perception: Leveraging Action in Perception and Perception in Action

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.

IEEE Transactions on Robotics, 33, pages: 1273-1291, December 2017 (article)

Abstract
Recent approaches in robotics follow the insight that perception is facilitated by interactivity with the environment. These approaches are subsumed under the term of Interactive Perception (IP). We argue that IP provides the following benefits: (i) any type of forceful interaction with the environment creates a new type of informative sensory signal that would otherwise not be present and (ii) any prior knowledge about the nature of the interaction supports the interpretation of the signal. This is facilitated by knowledge of the regularity in the combined space of sensory information and action parameters. The goal of this survey is to postulate this as a principle and collect evidence in support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of Interactive Perception. We close this survey by discussing the remaining open questions. Thereby, we hope to define a field and inspire future work.

arXiv DOI Project Page [BibTex]

2017

arXiv DOI Project Page [BibTex]


Thumb xl qg net rev
Acquiring Target Stacking Skills by Goal-Parameterized Deep Reinforcement Learning

Li, W., Bohg, J., Fritz, M.

arXiv, November 2017 (article) Submitted

Abstract
Understanding physical phenomena is a key component of human intelligence and enables physical interaction with previously unseen environments. In this paper, we study how an artificial agent can autonomously acquire this intuition through interaction with the environment. We created a synthetic block stacking environment with physics simulation in which the agent can learn a policy end-to-end through trial and error. Thereby, we bypass to explicitly model physical knowledge within the policy. We are specifically interested in tasks that require the agent to reach a given goal state that may be different for every new trial. To this end, we propose a deep reinforcement learning framework that learns policies which are parametrized by a goal. We validated the model on a toy example navigating in a grid world with different target positions and in a block stacking task with different target structures of the final tower. In contrast to prior work, our policies show better generalization across different goals.

arXiv [BibTex]


no image
Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

arXiv Supplementary material PDF DOI Project Page [BibTex]


Thumb xl fig  quali  arm
Probabilistic Articulated Real-Time Tracking for Robot Manipulation

(Best Paper of RA-L 2017, Finalist of Best Robotic Vision Paper Award of ICRA 2017)

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.

IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)

Abstract
We propose a probabilistic filtering method which fuses joint measurements with depth images to yield a precise, real-time estimate of the end-effector pose in the camera frame. This avoids the need for frame transformations when using it in combination with visual object tracking methods. Precision is achieved by modeling and correcting biases in the joint measurements as well as inaccuracies in the robot model, such as poor extrinsic camera calibration. We make our method computationally efficient through a principled combination of Kalman filtering of the joint measurements and asynchronous depth-image updates based on the Coordinate Particle Filter. We quantitatively evaluate our approach on a dataset recorded from a real robotic platform, annotated with ground truth from a motion capture system. We show that our approach is robust and accurate even under challenging conditions such as fast motion, significant and long-term occlusions, and time-varying biases. We release the dataset along with open-source code of our approach to allow for quantitative comparison with alternative approaches.

arXiv video code and dataset video PDF DOI Project Page [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

Project Page [BibTex]

Project Page [BibTex]

2014


no image
Wenn es was zu sagen gibt

(Klaus Tschira Award 2014 in Computer Science)

Trimpe, S.

Bild der Wissenschaft, pages: 20-23, November 2014, (popular science article in German) (article)

PDF Project Page [BibTex]

2014

PDF Project Page [BibTex]


no image
Robotics and Neuroscience

Floreano, Dario, Ijspeert, Auke Jan, Schaal, S.

Current Biology, 24(18):R910-R920, sep 2014 (article)

[BibTex]

[BibTex]


Thumb xl realexperiment
Nonmyopic View Planning for Active Object Classification and Pose Estimation

Atanasov, N., Sankaran, B., Le Ny, J., Pappas, G., Daniilidis, K.

IEEE Transactions on Robotics, May 2014, clmc (article)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of viewpoints, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and real-world experiments with the PR2 robot. The results suggest a significant improvement over static object detection

Web pdf link (url) [BibTex]

Web pdf link (url) [BibTex]


Thumb xl screen shot 2015 08 22 at 22.50.12
Data-Driven Grasp Synthesis - A Survey

Bohg, J., Morales, A., Asfour, T., Kragic, D.

IEEE Transactions on Robotics, 30, pages: 289 - 309, IEEE, April 2014 (article)

Abstract
We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


no image
A Limiting Property of the Matrix Exponential

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(4):1105-1110, 2014 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Event-Based State Estimation With Variance-Based Triggering

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(12):3266-3281, 2014 (article)

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


Thumb xl muscle
Muscle Synergy Features in Behavior Adaptation and Recovery

Alnajjar, F. S., Berenz, V., Ken-ichi, O., Ohno, K., Yamada, H., Kondo, I., Shimoda, S.

In Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, 24-26 June, 2014, pages: 245-253, Springer International Publishing, Cham, 2014 (inbook)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Perspective: Intelligent Systems: Bits and Bots

Spatz, J. P., Schaal, S.

Nature, (509), 2014, clmc (article)

Abstract
What is intelligence, and can we create it? Animals can perceive, reason, react and learn, but they are just one example of an intelligent system. Intelligent systems could be robots as large as humans, helping with search-and- rescue operations in dangerous places, or smart devices as tiny as a cell, delivering drugs to a target within the body. Even computing systems can be intelligent, by perceiving the world, crawling the web and processing â??big dataâ?? to extract and learn from complex information.Understanding not only how intelligence can be reproduced, but also how to build systems that put these ideas into practice, will be a challenge. Small intelligent systems will require new materials and fabrication methods, as well as com- pact information processors and power sources. And for nano-sized systems, the rules change altogether. The laws of physics operate very differently at tiny scales: for a nanorobot, swimming through water is like struggling through treacle.Researchers at the Max Planck Institute for Intelligent Systems have begun to solve these problems by developing new computational methods, experiment- ing with unique robotic systems and fabricating tiny, artificial propellers, like bacterial flagella, to propel nanocreations through their environment.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
An autonomous manipulation system based on force control and optimization

Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R. C., Sukhatme, G. S., Schaal, S.

Autonomous Robots, 36(1-2):11-30, January 2014 (article)

Abstract
In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.

Autonomous Robots, 36(1-2):51-65, January 2014 (article)

Abstract
The ability to grasp unknown objects still remains an unsolved problem in the robotics community. One of the challenges is to choose an appropriate grasp configuration, i.e., the 6D pose of the hand relative to the object and its finger configuration. In this paper, we introduce an algorithm that is based on the assumption that similarly shaped objects can be grasped in a similar way. It is able to synthesize good grasp poses for unknown objects by finding the best matching object shape templates associated with previously demonstrated grasps. The grasp selection algorithm is able to improve over time by using the information of previous grasp attempts to adapt the ranking of the templates to new situations. We tested our approach on two different platforms, the Willow Garage PR2 and the Barrett WAM robot, which have very different hand kinematics. Furthermore, we compared our algorithm with other grasp planners and demonstrated its superior performance. The results presented in this paper show that the algorithm is able to find good grasp configurations for a large set of unknown objects from a relatively small set of demonstrations, and does improve its performance over time.

link (url) DOI [BibTex]

2010


Thumb xl screen shot 2015 08 23 at 14.17.02
Learning Grasping Points with Shape Context

Bohg, J., Kragic, D.

Robotics and Autonomous Systems, 58(4):362-377, North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, April 2010 (article)

Abstract
This paper presents work on vision based robotic grasping. The proposed method adopts a learning framework where prototypical grasping points are learnt from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labelled synthetic images. We evaluate and compare the performance of linear and non-linear classifiers. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects.

pdf link (url) DOI [BibTex]

2010

pdf link (url) DOI [BibTex]


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

link (url) [BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

PDF [BibTex]

PDF [BibTex]


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

PDF [BibTex]

PDF [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2003


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

link (url) [BibTex]

2003

link (url) [BibTex]

1995


no image
Batting a ball: Dynamics of a rhythmic skill

Sternad, D., Schaal, S., Atkeson, C. G.

In Studies in Perception and Action, pages: 119-122, (Editors: Bardy, B.;Bostma, R.;Guiard, Y.), Erlbaum, Hillsdayle, NJ, 1995, clmc (inbook)

[BibTex]

1995

[BibTex]


no image
Memory-based neural networks for robot learning

Atkeson, C. G., Schaal, S.

Neurocomputing, 9, pages: 1-27, 1995, clmc (article)

Abstract
This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task. Keywords: memory-based, robot learning, locally weighted regression, nearest neighbor, local models.

link (url) [BibTex]

link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]