Anderson, M., Anderson, S., Berenz, V.
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
Proceedings of the IEEE, pages: 1,15, October 2018 (article)
Berenz, V., Schaal, S.
Playful: Reactive Programming for Orchestrating Robotic Behavior
IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press
Shao, L., Tian, Y., Bohg, J.
ClusterNet: Instance Segmentation in RGB-D Images
arXiv, September 2018, Submitted to ICRA'19 (article) Submitted
Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.
Leveraging Contact Forces for Learning to Grasp
arXiv, September 2018, Submitted to ICRA'19 (article) Submitted
Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.
Real-time Perception meets Reactive Motion Generation
IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)
Muehlebach, M., Trimpe, S.
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach
IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)
Ascoli, A., Baumann, D., Tetzlaff, R., Chua, L. O., Hild, M.
Memristor-enhanced humanoid robot control system–Part I: theory behind the novel memcomputing paradigm
International Journal of Circuit Theory and Applications, 46(1):155-183, 2018 (article)
Kloss, A., Schaal, S., Bohg, J.
Combining learned and analytical models for predicting action effects
arXiv, 2018 (article) Submitted
Baumann, D., Ascoli, A., Tetzlaff, R., Chua, L. O., Hild, M.
Memristor-enhanced humanoid robot control system–Part II: circuit theoretic model and performance analysis
International Journal of Circuit Theory and Applications, 46(1):184-220, 2018 (article)
Trimpe, S.
Lernende Roboter
In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)
Schaal, S.
Autonomous Robots
In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)
Alnajjar, F., Itkonen, M., Berenz, V., Tournier, M., Nagai, C., Shimoda, S.
Sensory synergy as environmental input integration
Frontiers in Neuroscience, 8, pages: 436, 2015 (article)
Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.
Active Reward Learning with a Novel Acquisition Function
Autonomous Robots, 39(3):389-405, 2015 (article)
Manschitz, S., Kober, J., Gienger, M., Peters, J.
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations
Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)
Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.
Bayesian Optimization for Learning Gaits under Uncertainty
Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)
Berenz, V., Alnajjar, F., Hayashibe, M., Shimoda, S.
Tacit Learning for Emergence of Task-Related Behaviour through Signal Accumulation
In Emergent Trends in Robotics and Intelligent Systems: Where is the Role of Intelligent Technologies in the Next Generation of Robots?, pages: 31-38, Springer International Publishing, Cham, 2015 (inbook)
Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.
Robot Learning
In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)
Bohg, J., Kragic, D.
Learning Grasping Points with Shape Context
Robotics and Autonomous Systems, 58(4):362-377, North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, April 2010 (article)
Peters, J., Kober, J., Schaal, S.
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)
Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)
Ting, J., DSouza, A., Schaal, S.
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics
Neural Networks, 2010, clmc (article)
Theodorou, E. A., Todorov, E., Valero-Cuevas, F.
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model
Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)
Ting, J., Vijayakumar, S., Schaal, S.
Locally weighted regression for control
In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)
Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.
Efficient learning and feature detection in high dimensional regression
Neural Computation, 22, pages: 831-886, 2010, clmc (article)
Theodorou, E., Tassa, Y., Todorov, E.
Stochastic Differential Dynamic Programming
In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)
Schaal, S., Atkeson, C. G.
Learning control in robotics – trajectory-based opitimal control techniques
Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)
Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.
Learning, planning, and control for quadruped locomotion over challenging terrain
International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)
Nakanishi, J., Farrell, J. A., Schaal, S.
Composite adaptive control with locally weighted statistical learning
Neural Networks, 18(1):71-90, January 2005, clmc (article)
Shibata, T., Tabata, H., Schaal, S., Kawato, M.
A model of smooth pursuit based on learning of the target dynamics using only retinal signals
Neural Networks, 18, pages: 213-225, 2005, clmc (article)
Hidaka, Y, Theodorou, E.
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects
Technical Report-2005-1, 2005, clmc (article)
Schaal, S., Ijspeert, A., Billard, A.
Computational approaches to motor learning by imitation
Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)
Schaal, S.
Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6):233-242, 1999, clmc (article)
Schaal, S.
Nonparametric regression for learning nonlinear transformations
In Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, 2, pages: 595-621, (Editors: Ritter, H.;Cruse, H.;Dean, J.), Kluwer Academic Publishers, 1999, clmc (inbook)
Sternad, D., Schaal, D.
Segmentation of endpoint trajectories does not imply segmented control
Experimental Brain Research, 124(1):118-136, 1999, clmc (article)
Atkeson, C. G., Moore, A. W., Schaal, S.
Locally weighted learning
Artificial Intelligence Review, 11(1-5):11-73, 1997, clmc (article)
Atkeson, C. G., Moore, A. W., Schaal, S.
Locally weighted learning for control
Artificial Intelligence Review, 11(1-5):75-113, 1997, clmc (article)
Ehrlenspiel, K., Schaal, S.
Ways to smarter CAD-systems
In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)