Header logo is am


2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

arXiv [BibTex]

2015

arXiv [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

link (url) [BibTex]

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

[BibTex]

[BibTex]


Thumb xl tacit
Tacit Learning for Emergence of Task-Related Behaviour through Signal Accumulation

Berenz, V., Alnajjar, F., Hayashibe, M., Shimoda, S.

In Emergent Trends in Robotics and Intelligent Systems: Where is the Role of Intelligent Technologies in the Next Generation of Robots?, pages: 31-38, Springer International Publishing, Cham, 2015 (inbook)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

[BibTex]

[BibTex]

2010


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

link (url) [BibTex]

2010

link (url) [BibTex]

2006


no image
Statistical Learning of LQG controllers

Theodorou, E.

Technical Report-2006-1, Computational Action and Vision Lab University of Minnesota, 2006, clmc (techreport)

PDF [BibTex]

2006

PDF [BibTex]


no image
Approximate nearest neighbor regression in very high dimensions

Vijayakumar, S., DSouza, A., Schaal, S.

In Nearest-Neighbor Methods in Learning and Vision, pages: 103-142, (Editors: Shakhnarovich, G.;Darrell, T.;Indyk, P.), Cambridge, MA: MIT Press, 2006, clmc (inbook)

link (url) [BibTex]

link (url) [BibTex]

1999


no image
Nonparametric regression for learning nonlinear transformations

Schaal, S.

In Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, 2, pages: 595-621, (Editors: Ritter, H.;Cruse, H.;Dean, J.), Kluwer Academic Publishers, 1999, clmc (inbook)

Abstract
Information processing in animals and artificial movement systems consists of a series of transformations that map sensory signals to intermediate representations, and finally to motor commands. Given the physical and neuroanatomical differences between individuals and the need for plasticity during development, it is highly likely that such transformations are learned rather than pre-programmed by evolution. Such self-organizing processes, capable of discovering nonlinear dependencies between different groups of signals, are one essential part of prerational intelligence. While neural network algorithms seem to be the natural choice when searching for solutions for learning transformations, this paper will take a more careful look at which types of neural networks are actually suited for the requirements of an autonomous learning system. The approach that we will pursue is guided by recent developments in learning theory that have linked neural network learning to well established statistical theories. In particular, this new statistical understanding has given rise to the development of neural network systems that are directly based on statistical methods. One family of such methods stems from nonparametric regression. This paper will compare nonparametric learning with the more widely used parametric counterparts in a non technical fashion, and investigate how these two families differ in their properties and their applicabilities. We will argue that nonparametric neural networks offer a set of characteristics that make them a very promising candidate for on-line learning in autonomous system.

link (url) [BibTex]

1999

link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]