Header logo is am


2011


Mind the gap - robotic grasping under incomplete observation
Mind the gap - robotic grasping under incomplete observation

Bohg, J., Johnson-Roberson, M., Leon, B., Felip, J., Gratal, X., Bergstrom, N., Kragic, D., Morales, A.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 686-693, May 2011 (inproceedings)

Abstract
We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

pdf video code data DOI Project Page [BibTex]

2011

pdf video code data DOI Project Page [BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
An Experimental Demonstration of a Distributed and Event-based State Estimation Algorithm

(Best Interactive Paper Award (top out of 450))

Trimpe, S., D’Andrea, R.

In Proceedings of the 18th IFAC World Congress, 2011 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

PDF [BibTex]

PDF [BibTex]


Enhanced visual scene understanding through human-robot dialog
Enhanced visual scene understanding through human-robot dialog

Johnson-Roberson, M., Bohg, J., Skantze, G., Gustafson, J., Carlson, R., Rasolzadeh, B., Kragic, D.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3342-3348, 2011 (inproceedings)

Abstract
We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a `human in the loop' where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

pdf video DOI Project Page [BibTex]

pdf video DOI Project Page [BibTex]


Risk and gain battery management for self-docking mobile robots
Risk and gain battery management for self-docking mobile robots

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pages: 1766-1771, 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Reduced Communication State Estimation for Control of an Unstable Networked Control System

Trimpe, S., D’Andrea, R.

In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011 (inproceedings)

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


TDM: A software framework for elegant and rapid development of autonomous behaviors for humanoid robots.
TDM: A software framework for elegant and rapid development of autonomous behaviors for humanoid robots.

Berenz, V., Tanaka, F., Suzuki, K., Herink, M.

In Humanoids, pages: 179-186, IEEE, 2011 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


Coaching robot behavior using continuous physiological affective feedback
Coaching robot behavior using continuous physiological affective feedback

Gruebler, A., Berenz, V., Suzuki, K.

In 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2011), Bled, Slovenia, October 26-28, 2011, pages: 466-471, 2011 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Neuromuscular Stochastic Optimal Control of a Tendon Driven Index Finger

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

In Proceedings of American Control Conference (ACC), 2011, clmc (inproceedings)

Abstract
With the goal to build robotic hands which can reach the levels of dexterity and robustness of the hand, the question of what are the candidate control principles that can handle the nonlinearities, the high dimensionality and the internal noise of biomechanical structures of the complexity of the hand, is still open. In this work we present the first stochastic optimal feedback controller applied to a full tendon driven simulated robotic index finger. In our model we do take into account the full tendon structure of the index finger which consist of 11 tendons based on the underlying physiology and we consider muscle with the typical force - length and force velocity properties. Our feedback controller show robustness against noise and perturbation of the dynamics while it can also successfully handle the nonlinearities and high dimensionality of the robotic index finger. Furthermore as it is shown in the evaluations, it provides the complete time history of the tendon excursions and the tendon velocities of the index finger for the tasks of tapping with zero and nonzero terminal velocities.

PDF [BibTex]

PDF [BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Movement segmentation using a primitive library

Meier, F., Theodorou, E., Stulp, F., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), Sept. 25-30, San Francisco, CA, 2011, clmc (inproceedings)

Abstract
Segmenting complex movements into a sequence of primitives remains a difficult problem with many applications in the robotics and vision communities. In this work, we show how the movement segmentation problem can be reduced to a sequential movement recognition problem. To this end, we reformulate the orig-inal Dynamic Movement Primitive (DMP) formulation as a linear dynamical sys-tem with control inputs. Based on this new formulation, we develop an Expecta-tion-Maximization algorithm to estimate the duration and goal position of a par-tially observed trajectory. With the help of this algorithm and the assumption that a library of movement primitives is present, we present a movement seg-mentation framework. We illustrate the usefulness of the new DMP formulation on the two applications of online movement recognition and movement segmen-tation.

link (url) [BibTex]

link (url) [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Additional DOFs and sensors for bio-inspired locomotion: Towards active spine, ankle joints, and feet for a quadruped robot

Kuehn, D., Grimminger, F., Beinersdorf, F., Bernhard, F., Burchardt, A., Schilling, M., Simnofske, M., Stark, T., Zenzes, M., Kirchner, F.

In 2011 IEEE International Conference on Robotics and Biomimetics, pages: 2780-2786, December 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Learning to grasp under uncertainty

Stulp, F., Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present an approach that enables robots to learn motion primitives that are robust towards state estimation uncertainties. During reaching and preshaping, the robot learns to use fine manipulation strategies to maneuver the object into a pose at which closing the hand to perform the grasp is more likely to succeed. In contrast, common assumptions in grasp planning and motion planning for reaching are that these tasks can be performed independently, and that the robot has perfect knowledge of the pose of the objects in the environment. We implement our approach using Dynamic Movement Primitives and the probabilistic model-free reinforcement learning algorithm Policy Improvement with Path Integrals (PI2 ). The cost function that PI2 optimizes is a simple boolean that penalizes failed grasps. The key to acquiring robust motion primitives is to sample the actual pose of the object from a distribution that represents the state estimation uncertainty. During learning, the robot will thus optimize the chance of grasping an object from this distribution, rather than at one specific pose. In our empirical evaluation, we demonstrate how the motion primitives become more robust when grasping simple cylindrical objects, as well as more complex, non-convex objects. We also investigate how well the learned motion primitives generalize towards new object positions and other state estimation uncertainty distributions.

link (url) [BibTex]

link (url) [BibTex]

2009


Grasping familiar objects using shape context
Grasping familiar objects using shape context

Bohg, J., Kragic, D.

In Advanced Robotics, 2009. ICAR 2009. International Conference on, pages: 1-6, 2009 (inproceedings)

Abstract
We present work on vision based robotic grasping. The proposed method relies on extracting and representing the global contour of an object in a monocular image. A suitable grasp is then generated using a learning framework where prototypical grasping points are learned from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labeled synthetic images. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects. Furthermore, we will show how our representation supports the inference of a full grasp configuration.

pdf slides [BibTex]

2009

pdf slides [BibTex]


Sensory-objects network driven by intrinsic motivation for survival abilities
Sensory-objects network driven by intrinsic motivation for survival abilities

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on, pages: 871-876, 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
A Limiting Property of the Matrix Exponential with Application to Multi-loop Control

Trimpe, S., D’Andrea, R.

In Proceedings of the Joint 48th IEEE Conference on Decision (CDC) and Control and 28th Chinese Control Conference, 2009 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path integral-based stochastic optimal control for rigid body dynamics

Theodorou, E. A., Buchli, J., Schaal, S.

In Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL ’09. IEEE Symposium on, pages: 219-225, 2009, clmc (inproceedings)

Abstract
Recent advances on path integral stochastic optimal control [1],[2] provide new insights in the optimal control of nonlinear stochastic systems which are linear in the controls, with state independent and time invariant control transition matrix. Under these assumptions, the Hamilton-Jacobi-Bellman (HJB) equation is formulated and linearized with the use of the logarithmic transformation of the optimal value function. The resulting HJB is a linear second order partial differential equation which is solved by an approximation based on the Feynman-Kac formula [3]. In this work we review the theory of path integral control and derive the linearized HJB equation for systems with state dependent control transition matrix. In addition we derive the path integral formulation for the general class of systems with state dimensionality that is higher than the dimensionality of the controls. Furthermore, by means of a modified inverse dynamics controller, we apply path integral stochastic optimal control over the new control space. Simulations illustrate the theoretical results. Future developments and extensions are discussed.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning locomotion over rough terrain using terrain templates

Kalakrishnan, M., Buchli, J., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 167-172, 2009, clmc (inproceedings)

Abstract
We address the problem of foothold selection in robotic legged locomotion over very rough terrain. The difficulty of the problem we address here is comparable to that of human rock-climbing, where foot/hand-hold selection is one of the most critical aspects. Previous work in this domain typically involves defining a reward function over footholds as a weighted linear combination of terrain features. However, a significant amount of effort needs to be spent in designing these features in order to model more complex decision functions, and hand-tuning their weights is not a trivial task. We propose the use of terrain templates, which are discretized height maps of the terrain under a foothold on different length scales, as an alternative to manually designed features. We describe an algorithm that can simultaneously learn a small set of templates and a foothold ranking function using these templates, from expert-demonstrated footholds. Using the LittleDog quadruped robot, we experimentally show that the use of terrain templates can produce complex ranking functions with higher performance than standard terrain features, and improved generalization to unseen terrain.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
CESAR: A lunar crater exploration and sample return robot

Schwendner, J., Grimminger, F., Bartsch, S., Kaupisch, T., Yüksel, M., Bresser, A., Akpo, J. B., Seydel, M. K. -., Dieterle, A., Schmidt, S., Kirchner, F.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3355-3360, October 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Concept Evaluation of a New Biologically Inspired Robot “Littleape”

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., Kirchner, F.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 589–594, IROS’09, IEEE Press, 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Compact models of motor primitive variations for predictible reaching and obstacle avoidance

Stulp, F., Oztop, E., Pastor, P., Beetz, M., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
over and over again. This regularity allows humans and robots to reuse existing solutions for known recurring tasks. We expect that reusing a set of standard solutions to solve similar tasks will facilitate the design and on-line adaptation of the control systems of robots operating in human environments. In this paper, we derive a set of standard solutions for reaching behavior from human motion data. We also derive stereotypical reaching trajectories for variations of the task, in which obstacles are present. These stereotypical trajectories are then compactly represented with Dynamic Movement Primitives. On the humanoid robot Sarcos CB, this approach leads to reproducible, predictable, and human-like reaching motions.

link (url) [BibTex]

link (url) [BibTex]


no image
Human optimization strategies under reward feedback

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2009), Waikoloa, Hawaii, 2009, 2009, clmc (inproceedings)

Abstract
Many hypothesis on human movement generation have been cast into an optimization framework, implying that movements are adapted to optimize a single quantity, like, e.g., jerk, end-point variance, or control cost. However, we still do not understand how humans actually learn when given only a cost or reward feedback at the end of a movement. Such a reinforcement learning setting has been extensively explored theoretically in engineering and computer science, but in human movement control, hardly any experiment studied movement learning under reward feedback. We present experiments probing which computational strategies humans use to optimize a movement under a continuous reward function. We present two experimental paradigms. The first paradigm mimics a ball-hitting task. Subjects (n=12) sat in front of a computer screen and moved a stylus on a tablet towards an unknown target. This target was located on a line that the subjects had to cross. During the movement, visual feedback was suppressed. After the movement, a reward was displayed graphically as a colored bar. As reward, we used a Gaussian function of the distance between the target location and the point of line crossing. We chose such a function since in sensorimotor tasks, the cost or loss function that humans seem to represent is close to an inverted Gaussian function (Koerding and Wolpert 2004). The second paradigm mimics pocket billiards. On the same experimental setup as above, the computer screen displayed a pocket (two bars), a white disk, and a green disk. The goal was to hit with the white disk the green disk (as in a billiard collision), such that the green disk moved into the pocket. Subjects (n=8) manipulated with the stylus the white disk to effectively choose start point and movement direction. Reward feedback was implicitly given as hitting or missing the pocket with the green disk. In both paradigms, subjects increased the average reward over trials. The surprising result was that in these experiments, humans seem to prefer a strategy that uses a reward-weighted average over previous movements instead of gradient ascent. The literature on reinforcement learning is dominated by gradient-ascent methods. However, our computer simulations and theoretical analysis revealed that reward-weighted averaging is the more robust choice given the amount of movement variance observed in humans. Apparently, humans choose an optimization strategy that is suitable for their own movement variance.

[BibTex]

[BibTex]


no image
Concept evaluation of a new biologically inspired robot “LittleApe”

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., Kirchner, F.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 589-594, October 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Proprioceptive control of a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In 2008 IEEE International Conference on Robotics and Biomimetics, pages: 774-779, February 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Learning and generalization of motor skills by learning from demonstration

Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2009), Kobe, Japan, May 12-19, 2009, 2009, clmc (inproceedings)

Abstract
We provide a general approach for learning robotic motor skills from human demonstration. To represent an observed movement, a non-linear differential equation is learned such that it reproduces this movement. Based on this representation, we build a library of movements by labeling each recorded movement according to task and context (e.g., grasping, placing, and releasing). Our differential equation is formulated such that generalization can be achieved simply by adapting a start and a goal parameter in the equation to the desired position values of a movement. For object manipulation, we present how our framework extends to the control of gripper orientation and finger position. The feasibility of our approach is demonstrated in simulation as well as on a real robot. The robot learned a pick-and-place operation and a water-serving task and could generalize these tasks to novel situations.

link (url) [BibTex]

link (url) [BibTex]


no image
Compliant quadruped locomotion over rough terrain

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 814-820, 2009, clmc (inproceedings)

Abstract
Many critical elements for statically stable walking for legged robots have been known for a long time, including stability criteria based on support polygons, good foothold selection, recovery strategies to name a few. All these criteria have to be accounted for in the planning as well as the control phase. Most legged robots usually employ high gain position control, which means that it is crucially important that the planned reference trajectories are a good match for the actual terrain, and that tracking is accurate. Such an approach leads to conservative controllers, i.e. relatively low speed, ground speed matching, etc. Not surprisingly such controllers are not very robust - they are not suited for the real world use outside of the laboratory where the knowledge of the world is limited and error prone. Thus, to achieve robust robotic locomotion in the archetypical domain of legged systems, namely complex rough terrain, where the size of the obstacles are in the order of leg length, additional elements are required. A possible solution to improve the robustness of legged locomotion is to maximize the compliance of the controller. While compliance is trivially achieved by reduced feedback gains, for terrain requiring precise foot placement (e.g. climbing rocks, walking over pegs or cracks) compliance cannot be introduced at the cost of inferior tracking. Thus, model-based control and - in contrast to passive dynamic walkers - active balance control is required. To achieve these objectives, in this paper we add two crucial elements to legged locomotion, i.e., floating-base inverse dynamics control and predictive force control, and we show that these elements increase robustness in face of unknown and unanticipated perturbations (e.g. obstacles). Furthermore, we introduce a novel line-based COG trajectory planner, which yields a simpler algorithm than traditional polygon based methods and creates the appropriate input to our control system.We show results from bot- h simulation and real world of a robotic dog walking over non-perceived obstacles and rocky terrain. The results prove the effectivity of the inverse dynamics/force controller. The presented results show that we have all elements needed for robust all-terrain locomotion, which should also generalize to other legged systems, e.g., humanoid robots.

link (url) [BibTex]

link (url) [BibTex]


no image
Inertial parameter estimation of floating-base humanoid systems using partial force sensing

Mistry, M., Schaal, S., Yamane, K.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
Recently, several controllers have been proposed for humanoid robots which rely on full-body dynamic models. The estimation of inertial parameters from data is a critical component for obtaining accurate models for control. However, floating base systems, such as humanoid robots, incur added challenges to this task (e.g. contact forces must be measured, contact states can change, etc.) In this work, we outline a theoretical framework for whole body inertial parameter estimation, including the unactuated floating base. Using a least squares minimization approach, conducted within the nullspace of unmeasured degrees of freedom, we are able to use a partial force sensor set for full-body estimation, e.g. using only joint torque sensors, allowing for estimation when contact force measurement is unavailable or unreliable (e.g. due to slipping, rolling contacts, etc.). We also propose how to determine the theoretical minimum force sensor set for full body estimation, and discuss the practical limitations of doing so.

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

2008

link (url) [BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Behavioral experiments on reinforcement learning in human motor control

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Reinforcement learning (RL) - learning solely based on reward or cost feedback - is widespread in robotics control and has been also suggested as computational model for human motor control. In human motor control, however, hardly any experiment studied reinforcement learning. Here, we study learning based on visual cost feedback in a reaching task and did three experiments: (1) to establish a simple enough experiment for RL, (2) to study spatial localization of RL, and (3) to study the dependence of RL on the cost function. In experiment (1), subjects sit in front of a drawing tablet and look at a screen onto which the drawing pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. We choose as cost the squared distance between target and virtual pen position at the target line. Above a threshold value, the cost was fixed at this value. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. As result, subjects could learn the bias, and thus, showed reinforcement learning. In experiment (2), we randomly altered the target position between three different locations (three different directions from start point: -45, 0, 45). For each direction, we chose a different bias. As result, subjects learned all three bias values simultaneously. Thus, RL can be spatially localized. In experiment (3), we varied the sensitivity of the cost function by multiplying the squared distance with a constant value C, while keeping the same cut-off threshold. As in experiment (2), we had three target locations. We assigned to each location a different C value (this assignment was randomized between subjects). Since subjects learned the three locations simultaneously, we could directly compare the effect of the different cost functions. As result, we found an optimal C value; if C was too small (insensitive cost), learning was slow; if C was too large (narrow cost valley), the exploration time was longer and learning delayed. Thus, reinforcement learning in human motor control appears to be sen

[BibTex]

[BibTex]


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Computational model for movement learning under uncertain cost

Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
Stochastic optimal control is a framework for computing control commands that lead to an optimal behavior under a given cost. Despite the long history of optimal control in engineering, it has been only recently applied to describe human motion. So far, stochastic optimal control has been mainly used in tasks that are already learned, such as reaching to a target. For learning, however, there are only few cases where optimal control has been applied. The main assumptions of stochastic optimal control that restrict its application to tasks after learning are the a priori knowledge of (1) a quadratic cost function (2) a state space model that captures the kinematics and/or dynamics of musculoskeletal system and (3) a measurement equation that models the proprioceptive and/or exteroceptive feedback. Under these assumptions, a sequence of control gains is computed that is optimal with respect to the prespecified cost function. In our work, we relax the assumption of the a priori known cost function and provide a computational framework for modeling tasks that involve learning. Typically, a cost function consists of two parts: one part that models the task constraints, like squared distance to goal at movement endpoint, and one part that integrates over the squared control commands. In learning a task, the first part of this cost function will be adapted. We use an expectation-maximization scheme for learning: the expectation step optimizes the task constraints through gradient descent of a reward function and the maximizing step optimizes the control commands. Our computational model is tested and compared with data given from a behavioral experiment. In this experiment, subjects sit in front of a drawing tablet and look at a screen onto which the drawing-pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. Therefore the cost is a function of this bias. The subjects were asked to reach to the target and minimize this cost over trials. In this behavioral experiment, subjects could learn the bias and thus showed reinforcement learning. With our computational model, we could model the learning process over trials. Particularly, the dependence on parameters of the reward function (Gaussian width) and the modulation of movement variance over time were similar in experiment and model.

[BibTex]

[BibTex]


no image
A Bayesian approach to empirical local linearizations for robotics

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)

Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a ``reasonable'' linear regime of the system, which can be defined from the Hessian at the point of the linearization -- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a ``reasonable'' local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. This approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.

link (url) [BibTex]

link (url) [BibTex]


no image
Do humans plan continuous trajectories in kinematic coordinates?

Hoffmann, H., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
The planning and execution of human arm movements is still unresolved. An ongoing controversy is whether we plan a movement in kinematic coordinates and convert these coordinates with an inverse internal model into motor commands (like muscle activation) or whether we combine a few muscle synergies or equilibrium points to move a hand, e.g., between two targets. The first hypothesis implies that a planner produces a desired end-effector position for all time points; the second relies on the dynamics of the muscular-skeletal system for a given control command to produce a continuous end-effector trajectory. To distinguish between these two possibilities, we use a visuomotor adaptation experiment. Subjects moved a pen on a graphics tablet and observed the pen's mapped position onto a screen (subjects quickly adapted to this mapping). The task was to move a cursor between two points in a given time window. In the adaptation test, we manipulated the velocity profile of the cursor feedback such that the shape of the trajectories remained unchanged (for straight paths). If humans would use a kinematic plan and map at each time the desired end-effector position onto control commands, subjects should adapt to the above manipulation. In a similar experiment, Wolpert et al (1995) showed adaptation to changes in the curvature of trajectories. This result, however, cannot rule out a shift of an equilibrium point or an additional synergy activation between start and end point of a movement. In our experiment, subjects did two sessions, one control without and one with velocity-profile manipulation. To skew the velocity profile of the cursor trajectory, we added to the current velocity, v, the function 0.8*v*cos(pi + pi*x), where x is the projection of the cursor position onto the start-goal line divided by the distance start to goal (x=0 at the start point). As result, subjects did not adapt to this manipulation: for all subjects, the true hand motion was not significantly modified in a direction consistent with adaptation, despite that the visually presented motion differed significantly from the control motion. One may still argue that this difference in motion was insufficient to be processed visually. Thus, as a control experiment, we replayed control and modified motions to the subjects and asked which of the two motions appeared 'more natural'. Subjects chose the unperturbed motion as more natural significantly better than chance. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no adaptation under such transformation.

[BibTex]

[BibTex]


no image
A Versatile Stair-Climbing Robot for Search and Rescue Applications

Eich, M., Grimminger, F., Kirchner, F.

In 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, pages: 35-40, October 2008 (inproceedings)

DOI [BibTex]

DOI [BibTex]

2007


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

PDF DOI [BibTex]

2007

PDF DOI [BibTex]


no image
Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

[BibTex]

[BibTex]


no image
Reinforcement learning by reward-weighted regression for operational space control

Peters, J., Schaal, S.

In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)

Abstract
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for machine learning

Peters, J., Theodorou, E., Schaal, S.

In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)

Abstract
We present an in-depth survey of policy gradient methods as they are used in the machine learning community for optimizing parameterized, stochastic control policies in Markovian systems with respect to the expected reward. Despite having been developed separately in the reinforcement learning literature, policy gradient methods employ likelihood ratio gradient estimators as also suggested in the stochastic simulation optimization community. It is well-known that this approach to policy gradient estimation traditionally suffers from three drawbacks, i.e., large variance, a strong dependence on baseline functions and a inefficient gradient descent. In this talk, we will present a series of recent results which tackles each of these problems. The variance of the gradient estimation can be reduced significantly through recently introduced techniques such as optimal baselines, compatible function approximations and all-action gradients. However, as even the analytically obtainable policy gradients perform unnaturally slow, it required the step from ÔvanillaÕ policy gradient methods towards natural policy gradients in order to overcome the inefficiency of the gradient descent. This development resulted into the Natural Actor-Critic architecture which can be shown to be very efficient in application to motor primitive learning for robotics.

[BibTex]

[BibTex]