Header logo is am


2012


no image
The Balancing Cube: A Dynamic Sculpture as Test Bed for Distributed Estimation and Control

Trimpe, S., D’Andrea, R.

IEEE Control Systems Magazine, 32(6):48-75, December 2012 (article)

DOI [BibTex]

2012

DOI [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 11.48.38 am
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Thumb xl nao2
Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions

Gruebler, A., Berenz, V., Suzuki, K.

Advanced Robotics, 26(10):1143-1159, 2012 (article)

link (url) DOI [BibTex]


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl battery
Autonomous battery management for mobile robots based on risk and gain assessment

Berenz, V., Tanaka, F., Suzuki, K.

Artif. Intell. Rev., 37(3):217-237, 2012 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]

2007


no image
Machine Learning of Motor Skills for Robotics

Peters, J.

University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can accomplish a multitude of different tasks, triggered by environmental context or higher level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning and human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this thesis, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting. As a theoretical foundation, we first study a general framework to generate control laws for real robots with a particular focus on skills represented as dynamical systems in differential constraint form. We present a point-wise optimal control framework resulting from a generalization of Gauss' principle and show how various well-known robot control laws can be derived by modifying the metric of the employed cost function. The framework has been successfully applied to task space tracking control for holonomic systems for several different metrics on the anthropomorphic SARCOS Master Arm. In order to overcome the limiting requirement of accurate robot models, we first employ learning methods to find learning controllers for task space control. However, when learning to execute a redundant control problem, we face the general problem of the non-convexity of the solution space which can force the robot to steer into physically impossible configurations if supervised learning methods are employed without further consideration. This problem can be resolved using two major insights, i.e., the learning problem can be treated as locally convex and the cost function of the analytical framework can be used to ensure global consistency. Thus, we derive an immediate reinforcement learning algorithm from the expectation-maximization point of view which leads to a reward-weighted regression technique. This method can be used both for operational space control as well as general immediate reward reinforcement learning problems. We demonstrate the feasibility of the resulting framework on the problem of redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as well as for a simulated anthropomorphic SARCOS Master Arm. While learning to execute tasks in task space is an essential component to a general framework to motor skill learning, learning the actual task is of even higher importance, particularly as this issue is more frequently beyond the abilities of analytical approaches than execution. We focus on the learning of elemental tasks which can serve as the "building blocks of movement generation", called motor primitives. Motor primitives are parameterized task representations based on splines or nonlinear differential equations with desired attractor properties. While imitation learning of parameterized motor primitives is a relatively well-understood problem, the self-improvement by interaction of the system with the environment remains a challenging problem, tackled in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. In conclusion, in this thesis, we have contributed a general framework for analytically computing robot control laws which can be used for deriving various previous control approaches and serves as foundation as well as inspiration for our learning algorithms. We have introduced two classes of novel reinforcement learning methods, i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These algorithms have been used in order to replace the analytical components of the theoretical framework by learned representations. Evaluations have been performed on both simulated and real robot arms.

[BibTex]

2007

[BibTex]


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
The new robotics - towards human-centered machines

Schaal, S.

HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115-126, 2007, clmc (article)

Abstract
Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research instiutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning an Outlier-Robust Kalman Filter

Ting, J., Theodorou, E., Schaal, S.

CLMC Technical Report: TR-CLMC-2007-1, Los Angeles, CA, 2007, clmc (techreport)

Abstract
We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step?s state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

PDF [BibTex]

PDF [BibTex]