Header logo is am


2019


Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

Support Video link (url) [BibTex]

2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

arXiv [BibTex]

2015

arXiv [BibTex]


Gaussian Process Optimization for Self-Tuning Control
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

[BibTex]

[BibTex]


Object Detection Using Deep Learning - Learning where to search using visual attention
Object Detection Using Deep Learning - Learning where to search using visual attention

Kloss, A.

Eberhard Karls Universität Tübingen, May 2015 (mastersthesis)

Abstract
Detecting and identifying the different objects in an image fast and reliably is an important skill for interacting with one’s environment. The main problem is that in theory, all parts of an image have to be searched for objects on many different scales to make sure that no object instance is missed. It however takes considerable time and effort to actually classify the content of a given image region and both time and computational capacities that an agent can spend on classification are limited. Humans use a process called visual attention to quickly decide which locations of an image need to be processed in detail and which can be ignored. This allows us to deal with the huge amount of visual information and to employ the capacities of our visual system efficiently. For computer vision, researchers have to deal with exactly the same problems, so learning from the behaviour of humans provides a promising way to improve existing algorithms. In the presented master’s thesis, a model is trained with eye tracking data recorded from 15 participants that were asked to search images for objects from three different categories. It uses a deep convolutional neural network to extract features from the input image that are then combined to form a saliency map. This map provides information about which image regions are interesting when searching for the given target object and can thus be used to reduce the parts of the image that have to be processed in detail. The method is based on a recent publication of Kümmerer et al., but in contrast to the original method that computes general, task independent saliency, the presented model is supposed to respond differently when searching for different target categories.

PDF Project Page [BibTex]


Robot Arm Tracking with Random Decision Forests
Robot Arm Tracking with Random Decision Forests

Widmaier, F.

Eberhard-Karls-Universität Tübingen, May 2015 (mastersthesis)

Abstract
For grasping and manipulation with robot arms, knowing the current pose of the arm is crucial for successful controlling its motion. Often, pose estimations can be acquired from encoders inside the arm, but they can have significant inaccuracy which makes the use of additional techniques necessary. In this master thesis, a novel approach of robot arm pose estimation is presented, that works on single depth images without the need of prior foreground segmentation or other preprocessing steps. A random regression forest is used, which is trained only on synthetically generated data. The approach improves former work by Bohg et al. by considerably reducing the computational effort both at training and test time. The forest in the new method directly estimates the desired joint angles while in the former approach, the forest casts 3D position votes for the joints, which then have to be clustered and fed into an iterative inverse kinematic process to finally get the joint angles. To improve the estimation accuracy, the standard training objective of the forest training is replaced by a specialized function that makes use of a model-dependent distance metric, called DISP. Experimental results show that the specialized objective indeed improves pose estimation and it is shown that the method, despite of being trained on synthetic data only, is able to provide reasonable estimations for real data at test time.

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

link (url) [BibTex]

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

[BibTex]

[BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

link (url) Project Page [BibTex]


Sensory synergy as environmental input integration
Sensory synergy as environmental input integration

Alnajjar, F., Itkonen, M., Berenz, V., Tournier, M., Nagai, C., Shimoda, S.

Frontiers in Neuroscience, 8, pages: 436, 2015 (article)

Abstract
The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

DOI [BibTex]

DOI [BibTex]


Tacit Learning for Emergence of Task-Related Behaviour through Signal Accumulation
Tacit Learning for Emergence of Task-Related Behaviour through Signal Accumulation

Berenz, V., Alnajjar, F., Hayashibe, M., Shimoda, S.

In Emergent Trends in Robotics and Intelligent Systems: Where is the Role of Intelligent Technologies in the Next Generation of Robots?, pages: 31-38, Springer International Publishing, Cham, 2015 (inbook)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

[BibTex]

[BibTex]

2012


no image
The Balancing Cube: A Dynamic Sculpture as Test Bed for Distributed Estimation and Control

Trimpe, S., D’Andrea, R.

IEEE Control Systems Magazine, 32(6):48-75, December 2012 (article)

DOI [BibTex]

2012

DOI [BibTex]


Visual Servoing on Unknown Objects
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions
Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions

Gruebler, A., Berenz, V., Suzuki, K.

Advanced Robotics, 26(10):1143-1159, 2012 (article)

link (url) DOI [BibTex]


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

Project Page [BibTex]


Autonomous battery management for mobile robots based on risk and gain assessment
Autonomous battery management for mobile robots based on risk and gain assessment

Berenz, V., Tanaka, F., Suzuki, K.

Artif. Intell. Rev., 37(3):217-237, 2012 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]

2011


Multi-Modal Scene Understanding for Robotic Grasping
Multi-Modal Scene Understanding for Robotic Grasping

Bohg, J.

(2011:17):vi, 194, Trita-CSC-A, KTH Royal Institute of Technology, KTH, Computer Vision and Active Perception, CVAP, Centre for Autonomous Systems, CAS, KTH, Centre for Autonomous Systems, CAS, December 2011 (phdthesis)

Abstract
Current robotics research is largely driven by the vision of creating an intelligent being that can perform dangerous, difficult or unpopular tasks. These can for example be exploring the surface of planet mars or the bottom of the ocean, maintaining a furnace or assembling a car. They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, are already frequently performed by robots. Others are still completely out of reach. Especially, household robots are far away from being deployable as general purpose devices. Although advancements have been made in this research area, robots are not yet able to perform household chores robustly in unstructured and open-ended environments given unexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual and motor capabilities are necessary for the robot to perform common tasks in a household scenario. In that context, an essential capability is to understand the scene that the robot has to interact with. This involves separating objects from the background but also from each other.Once this is achieved, many other tasks become much easier. Configuration of object scan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and even state-of-the-art methods may fail. Given an incomplete, noisy and potentially erroneously segmented scene model, the questions remain how suitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of prediction mechanisms that allow it to hypothesize about parts of the scene it has not yet observed. Additionally, the robot can also quantify how uncertain it is about this prediction allowing it to plan actions for exploring the scene at specifically uncertain places. We consider multiple modalities including monocular and stereo vision, haptic sensing and information obtained through a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modal exploration, grasps can be inferred for each object hypothesis. Dependent on whether the objects are known, familiar or unknown, different methodologies for grasp inference apply. In this thesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed and open-loop manner showing the effectiveness of the proposed methods in real-world scenarios.

pdf [BibTex]

2011

pdf [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

[BibTex]

[BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

link (url) [BibTex]

link (url) [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

link (url) [BibTex]

link (url) [BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

[BibTex]

[BibTex]


no image
Understanding haptics by evolving mechatronic systems

Loeb, G. E., Tsianos, G.A., Fishel, J.A., Wettels, N., Schaal, S.

Progress in Brain Research, 192, pages: 129, 2011 (article)

[BibTex]

[BibTex]

2000


no image
A brachiating robot controller

Nakanishi, J., Fukuda, T., Koditschek, D. E.

IEEE Transactions on Robotics and Automation, 16(2):109-123, 2000, clmc (article)

Abstract
We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an apeâ??s brachiation, we encode this task as the output of a â??target dynamical system.â? Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the â??ladder,â? â??swing-up,â? and â??ropeâ? problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including â??swing locomotionâ? and â??swing upâ? and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach.

link (url) [BibTex]

2000

link (url) [BibTex]


no image
Biomimetic gaze stabilization

Shibata, T., Schaal, S.

In Robot learning: an Interdisciplinary approach, pages: 31-52, (Editors: Demiris, J.;Birk, A.), World Scientific, 2000, clmc (inbook)

Abstract
Accurate oculomotor control is one of the essential pre-requisites for successful visuomotor coordination. In this paper, we suggest a biologically inspired control system for learning gaze stabilization with a biomimetic robotic oculomotor system. In a stepwise fashion, we develop a control circuit for the vestibulo-ocular reflex (VOR) and the opto-kinetic response (OKR), and add a nonlinear learning network to allow adaptivity. We discuss the parallels and differences of our system with biological oculomotor control and suggest solutions how to deal with nonlinearities and time delays in the control system. In simulation and actual robot studies, we demonstrate that our system can learn gaze stabilization in real time in only a few seconds with high final accuracy.

link (url) [BibTex]

link (url) [BibTex]


no image
Interaction of rhythmic and discrete pattern generators in single joint movements

Sternad, D., Dean, W. J., Schaal, S.

Human Movement Science, 19(4):627-665, 2000, clmc (article)

Abstract
The study investigates a single-joint movement task that combines a translatory and cyclic component with the objective to investigate the interaction of discrete and rhythmic movement elements. Participants performed an elbow movement in the horizontal plane, oscillating at a prescribed frequency around one target and shifting to a second target upon a trigger signal, without stopping the oscillation. Analyses focused on extracting the mutual influences of the rhythmic and the discrete component of the task. Major findings are: (1) The onset of the discrete movement was confined to a limited phase window in the rhythmic cycle. (2) Its duration was influenced by the period of oscillation. (3) The rhythmic oscillation was "perturbed" by the discrete movement as indicated by phase resetting. On the basis of these results we propose a model for the coordination of discrete and rhythmic actions (K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptations, Biological Cybernetics 52 (1985) 367-376; Mechanisms of frequency and pattern control in the neural rhythm generators, Biological Cybernetics 56 (1987) 345-353). For rhythmic movements an oscillatory pattern generator is developed following models of half-center oscillations (D. Bullock, S. Grossberg, The VITE model: a neural command circuit for generating arm and articulated trajectories, in: J.A.S. Kelso, A.J. Mandel, M. F. Shlesinger (Eds.), Dynamic Patterns in Complex Systems. World Scientific. Singapore. 1988. pp. 305-326). For discrete movements a point attractor dynamics is developed close to the VITE model For each joint degree of freedom both pattern generators co-exist but exert mutual inhibition onto each other. The suggested modeling framework provides a unified account for both discrete and rhythmic movements on the basis of neuronal circuitry. Simulation results demonstrated that the effects observed in human performance can be replicated using the two pattern generators with a mutually inhibiting coupling.

link (url) [BibTex]


no image
Dynamics of a bouncing ball in human performance

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Physical Review E, 63(011902):1-8, 2000, clmc (article)

Abstract
On the basis of a modified bouncing-ball model, we investigated whether human movements utilize principles of dynamic stability in their performance of a similar movement task. Stability analyses of the model provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions supporting that they attuned to and exploited the dynamic stability properties of the task.

link (url) [BibTex]

link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]