Header logo is am


2018


Thumb xl screen shot 2018 04 19 at 14.57.08
Motion-based Object Segmentation based on Dense RGB-D Scene Flow

Shao, L., Shah, P., Dwaracherla, V., Bohg, J.

IEEE Robotics and Automation Letters, 3(4):3797-3804, IEEE, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2018 (conference)

Abstract
Given two consecutive RGB-D images, we propose a model that estimates a dense 3D motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes often consist of a set of rigidly moving objects. Our model jointly estimates (i) the segmentation of the scene into an unknown but finite number of objects, (ii) the motion trajectories of these objects and (iii) the object scene flow. We employ an hourglass, deep neural network architecture. In the encoding stage, the RGB and depth images undergo spatial compression and correlation. In the decoding stage, the model outputs three images containing a per-pixel estimate of the corresponding object center as well as object translation and rotation. This forms the basis for inferring the object segmentation and final object scene flow. To evaluate our model, we generated a new and challenging, large-scale, synthetic dataset that is specifically targeted at robotic manipulation: It contains a large number of scenes with a very diverse set of simultaneously moving 3D objects and is recorded with a commonly-used RGB-D camera. In quantitative experiments, we show that we significantly outperform state-of-the-art scene flow and motion-segmentation methods. In qualitative experiments, we show how our learned model transfers to challenging real-world scenes, visually generating significantly better results than existing methods.

Project Page arXiv DOI [BibTex]

2018

Project Page arXiv DOI [BibTex]


Thumb xl screenshot from 2018 06 15 22 59 30
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

link (url) DOI [BibTex]


Thumb xl screenshot from 2017 07 27 17 24 14
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

playful website playful_IEEE_RAM link (url) DOI [BibTex]


Thumb xl screen shot 2018 09 19 at 09.33.59
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl grasping
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

video arXiv [BibTex]


Thumb xl teaser image
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Thumb xl octo turned
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

arxiv video video link (url) DOI Project Page [BibTex]


Thumb xl meta learning overview
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

pdf video code [BibTex]

pdf video code [BibTex]


Thumb xl learning ct w asm block diagram detailed
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Memristor-enhanced humanoid robot control system–Part I: theory behind the novel memcomputing paradigm

Ascoli, A., Baumann, D., Tetzlaff, R., Chua, L. O., Hild, M.

International Journal of Circuit Theory and Applications, 46(1):155-183, 2018 (article)

DOI [BibTex]

DOI [BibTex]


Thumb xl img
Combining learned and analytical models for predicting action effects

Kloss, A., Schaal, S., Bohg, J.

arXiv, 2018 (article) Submitted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

arXiv pdf link (url) [BibTex]


no image
Memristor-enhanced humanoid robot control system–Part II: circuit theoretic model and performance analysis

Baumann, D., Ascoli, A., Tetzlaff, R., Chua, L. O., Hild, M.

International Journal of Circuit Theory and Applications, 46(1):184-220, 2018 (article)

DOI [BibTex]

DOI [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2001


no image
Humanoid oculomotor control based on concepts of computational neuroscience

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

In Humanoids2001, Second IEEE-RAS International Conference on Humanoid Robots, 2001, clmc (inproceedings)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., the stabilization of gaze in face of unknown perturbations of the body, selective attention, the complexity of stereo vision and dealing with large information processing delays. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors was derived from inspirations from computational neuroscience, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors that appears natural and human-like.

link (url) [BibTex]

2001

link (url) [BibTex]


no image
Trajectory formation for imitation with nonlinear dynamical systems

Ijspeert, A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), pages: 752-757, Weilea, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
This article explores a new approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system (TFS) in the context of a humanoid robot simulation that is part of the Virtual Trainer (VT) project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multi-joint human movements can be encoded successfully, and that this system allows robust modifications of the movement policy through external variables.

link (url) [BibTex]

link (url) [BibTex]


no image
Real-time statistical learning for robotics and human augmentation

Schaal, S., Vijayakumar, S., D’Souza, A., Ijspeert, A., Nakanishi, J.

In International Symposium on Robotics Research, (Editors: Jarvis, R. A.;Zelinsky, A.), Lorne, Victoria, Austrialia Nov.9-12, 2001, clmc (inproceedings)

Abstract
Real-time modeling of complex nonlinear dynamic processes has become increasingly important in various areas of robotics and human augmentation. To address such problems, we have been developing special statistical learning methods that meet the demands of on-line learning, in particular the need for low computational complexity, rapid learning, and scalability to high-dimensional spaces. In this paper, we introduce a novel algorithm that possesses all the necessary properties by combining methods from probabilistic and nonparametric learning. We demonstrate the applicability of our methods for three different applications in humanoid robotics, i.e., the on-line learning of a full-body inverse dynamics model, an inverse kinematics model, and imitation learning. The latter application will also introduce a novel method to shape attractor landscapes of dynamical system by means of statis-tical learning.

link (url) [BibTex]

link (url) [BibTex]


no image
Robust learning of arm trajectories through human demonstration

Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
We present a model, composed of hierarchy of artificial neural networks, for robot learning by demonstration. The model is implemented in a dynamic simulation of a 41 degrees of freedom humanoid for reproducing 3D human motion of the arm. Results show that the model requires few information about the desired trajectory and learns on-line the relevant features of movement. It can generalize across a small set of data to produce a qualitatively good reproduction of the demonstrated trajectory. Finally, it is shown that reproduction of the trajectory after learning is robust against perturbations.

link (url) [BibTex]

link (url) [BibTex]


no image
Synchronized robot drumming by neural oscillator

Kotosaka, S., Schaal, S.

Journal of the Robotics Society of Japan, 19(1):116-123, 2001, clmc (article)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

[BibTex]

[BibTex]


no image
Origins and violations of the 2/3 power law in rhythmic 3D movements

Schaal, S., Sternad, D.

Experimental Brain Research, 136, pages: 60-72, 2001, clmc (article)

Abstract
The 2/3 power law, the nonlinear relationship between tangential velocity and radius of curvature of the endeffector trajectory, has been suggested as a fundamental constraint of the central nervous system in the formation of rhythmic endpoint trajectories. However, studies on the 2/3 power law have largely been confined to planar drawing patterns of relatively small size. With the hypothesis that this strategy overlooks nonlinear effects that are constitutive in movement generation, the present experiments tested the validity of the power law in elliptical patterns which were not confined to a planar surface and which were performed by the unconstrained 7-DOF arm with significant variations in pattern size and workspace orientation. Data were recorded from five human subjects where the seven joint angles and the endpoint trajectories were analyzed. Additionally, an anthropomorphic 7-DOF robot arm served as a "control subject" whose endpoint trajectories were generated on the basis of the human joint angle data, modeled as simple harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power law is systematically violated with increasing pattern size, in both exponent and the goodness of fit. The origins of these violations can be explained analytically based on smooth rhythmic trajectory formation and the kinematic structure of the human arm. We conclude that in unconstrained rhythmic movements, the power law seems to be a by-product of a movement system that favors smooth trajectories, and that it is unlikely to serve as a primary movement generating principle. Our data rather suggests that subjects employed smooth oscillatory pattern generators in joint space to realize the required movement patterns.

link (url) [BibTex]

link (url) [BibTex]


no image
Graph-matching vs. entropy-based methods for object detection
Neural Networks, 14(3):345-354, 2001, clmc (article)

Abstract
Labeled Graph Matching (LGM) has been shown successful in numerous ob-ject vision tasks. This method is the basis for arguably the best face recognition system in the world. We present an algorithm for visual pattern recognition that is an extension of LGM ("LGM+"). We compare the performance of LGM and LGM+ algorithms with a state of the art statistical method based on Mutual Information Maximization (MIM). We present an adaptation of the MIM method for multi-dimensional Gabor wavelet features. The three pattern recognition methods were evaluated on an object detection task, using a set of stimuli on which none of the methods had been tested previously. The results indicate that while the performance of the MIM method operating upon Gabor wavelets is superior to the same method operating on pixels and to LGM, it is surpassed by LGM+. LGM+ offers a significant improvement in performance over LGM without losing LGMâ??s virtues of simplicity, biological plausibility, and a computational cost that is 2-3 orders of magnitude lower than that of the MIM algorithm. 

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic gaze stabilization based on feedback-error learning with nonparametric regression networks

Shibata, T., Schaal, S.

Neural Networks, 14(2):201-216, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e. the stabilization of gaze in face of unknown perturbations of the body, selective attention, stereo vision, and dealing with large information processing delays. Given the nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate control of these behaviors through learning approaches. This paper develops a learning control system for the phylogenetically oldest behaviors of oculomotor control, the stabilization reflexes of gaze. In a step-wise procedure, we demonstrate how control theoretic reasonable choices of control components result in an oculomotor control system that resembles the known functional anatomy of the primate oculomotor system. The core of the learning system is derived from the biologically inspired principle of feedback-error learning combined with a state-of-the-art non-parametric statistical learning network. With this circuitry, we demonstrate that our humanoid robot is able to acquire high performance visual stabilization reflexes after about 40 s of learning despite significant nonlinearities and processing delays in the system.

link (url) [BibTex]


no image
Fast learning of biomimetic oculomotor control with nonparametric regression networks (in Japanese)

Shibata, T., Schaal, S.

Journal of the Robotics Society of Japan, 19(4):468-479, 2001, clmc (article)

[BibTex]

[BibTex]


no image
Bouncing a ball: Tuning into dynamic stability

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Journal of Experimental Psychology: Human Perception and Performance, 27(5):1163-1184, 2001, clmc (article)

Abstract
Rhythmically bouncing a ball with a racket was investigated and modeled with a nonlinear map. Model analyses provided a variable defining a dynamically stable solution that obviates computationally expensive corrections. Three experiments evaluated whether dynamic stability is optimized and what perceptual support is necessary for stable behavior. Two hypotheses were tested: (a) Performance is stable if racket acceleration is negative at impact, and (b) variability is lowest at an impact acceleration between -4 and -1 m/s2. In Experiment 1 participants performed the task, eyes open or closed, bouncing a ball confined to a 1-dimensional trajectory. Experiment 2 eliminated constraints on racket and ball trajectory. Experiment 3 excluded visual or haptic information. Movements were performed with negative racket accelerations in the range of highest stability. Performance with eyes closed was more variable, leaving acceleration unaffected. With haptic information, performance was more stable than with visual information alone.

[BibTex]

[BibTex]


no image
Overt visual attention for a humanoid robot

Vijayakumar, S., Conradt, J., Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
The goal of our research is to investigate the interplay between oculomotor control, visual processing, and limb control in humans and primates by exploring the computational issues of these processes with a biologically inspired artificial oculomotor system on an anthropomorphic robot. In this paper, we investigate the computational mechanisms for visual attention in such a system. Stimuli in the environment excite a dynamical neural network that implements a saliency map, i.e., a winner-take-all competition between stimuli while simultenously smoothing out noise and suppressing irrelevant inputs. In real-time, this system computes new targets for the shift of gaze, executed by the head-eye system of the robot. The redundant degrees-of- freedom of the head-eye system are resolved through a learned inverse kinematics with optimization criterion. We also address important issues how to ensure that the coordinate system of the saliency map remains correct after movement of the robot. The presented attention system is built on principled modules and generally applicable for any sensory modality.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning inverse kinematics

D’Souza, A., Vijayakumar, S., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates learning of inverse kinematics for resolved motion rate control (RMRC) employing an optimization criterion to resolve kinematic redundancies. Our learning approach is based on the key observations that learning an inverse of a non uniquely invertible function can be accomplished by augmenting the input representation to the inverse model and by using a spatially localized learning approach. We apply this strategy to inverse kinematics learning and demonstrate how a recently developed statistical learning algorithm, Locally Weighted Projection Regression, allows efficient learning of inverse kinematic mappings in an incremental fashion even when input spaces become rather high dimensional. The resulting performance of the inverse kinematics is comparable to Liegeois ([1]) analytical pseudo inverse with optimization. Our results are illustrated with a 30 degree-of-freedom humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic smooth pursuit based on fast learning of the target dynamics

Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
Following a moving target with a narrow-view foveal vision system is one of the essential oculomotor behaviors of humans and humanoids. This oculomotor behavior, called ``Smooth Pursuit'', requires accurate tracking control which cannot be achieved by a simple visual negative feedback controller due to the significant delays in visual information processing. In this paper, we present a biologically inspired and control theoretically sound smooth pursuit controller consisting of two cascaded subsystems. One is an inverse model controller for the oculomotor system, and the other is a learning controller for the dynamics of the visual target. The latter controller learns how to predict the target's motion in head coordinates such that tracking performance can be improved. We investigate our smooth pursuit system in simulations and experiments on a humanoid robot. By using a fast on-line statistical learning network, our humanoid oculomotor system is able to acquire high performance smooth pursuit after about 5 seconds of learning despite significant processing delays in the syste

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic oculomotor control

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

Adaptive Behavior, 9(3/4):189-207, 2001, clmc (article)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., capturing targets accurately on a very narrow fovea, dealing with large delays in the control system, the stabilization of gaze in face of unknown perturbations of the body, selective attention, and the complexity of stereo vision. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors and their integration - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors and the mechanism for their integration was derived with inspiration from computational theories as well as behavioral and physiological data in neuroscience. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Conversely, insights gained from our models have been able to directly influence views and provide new directions for computational neuroscience research.

link (url) [BibTex]

link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]