Collaborators

We are fortunate to be working with great colleagues and researchers at the Max Planck Institute (MPI) for Intelligent Systems, Tübingen, as well as from other international research institutions.

Collaborators at MPI Tübingen

External collaborators

 

Alumni

Former members of our group.

  • Anna Deichler (Internship, 2017)
  • Carlos Rubert (Internship, 2016), now: PhD student at UJI
  • Ke Wang (Master Thesis, 2016)
  • Andrea Bajcsy (Internship, 2016), now: PhD student at UC Berkeley
  • Alina Kloss (Master thesis, 2015), now: PhD student with us
  • Felix Widmaier (Master thesis, 2015)
  • Thibault Portigliatti (Internship 2015), now: Student at ENSTA Paris Tech
  • Alonso Marco Valle (Master thesis, 2015), now: PhD student at AMD
  • Holger Kaden (Diploma thesis, 2014)
  • Jan Issac (Diploma thesis, 2014), now: Scientific Programmer with us
  • Sophie Laturnus (Bachelor thesis, 2014)
  • Claudia Pfreundt (Bachelor thesis, 2014)

Learning to Grasp

Traditionally, the problem of robotic grasping has been formalized under the assumption of perfect knowledge on the object, robot hand and their relative pose. Simplifying assumptions were made on contact models, hand kinematics and capabilities or the structure of the environment. While this allows elegant solutions to multi-contact planning, many of these assumptions do not translate well into the real world that is riddled by uncertainty.

We have worked on the problem of how a robot can learn how to grasp when only partial and noisy information is available on the object, robot hand and their relative pose. We proposed different feature representations, learning mechanisms and training data.

Research projects and papers:
Learning to Grasp from Big Data
Template-Based Learning of Model Free Grasping
Data-Driven Grasp Synthesis - A Survey


Visual Tracking

One of the crucial capabilities required for autonomous manipulation and grasping is hand-eye coordination. It relies on continuous feedback on the location of robot hand and object during manipulation. We develop principled methods that endow a robot with this critical ability that address the following challenges: strong and long-term occlusions, high-dimensional measurements and state spaces, real-time demands and delays between sensor streams of different modalities. We have also released data sets to benchmark different approaches towards object and robot arm tracking.

Research projects:
Probabilistic Object and Manipulator Tracking
Robot Arm Pose Estimation as a Learning Problem


Vision-based Control and Robotic Systems

Using visual sensory data directly as feedback in a controller is a challenging problem. Compared to traditional sensors around which control loops are usually closed, vision sensor produce high-dimensional, noisy data that reflects only partial information about the environment. Furthermore, it is slow and may have significant delay.

Given all these challenges, we investigate how we can robustly close control loops around vision sensors and evaluate it extensively on real robotic platforms.

Research projects and papers:
Real-Time Perception meets Reactive Motion Generation
Autonomous Robotic Manipulation
Task-based Grasp Adaptation


Interactive Perception

A robot has different means to actively explore and better understand its environment. It can look around and fixate on interesting areas or it can ask someone for more information. Physical interaction is another essential means to explore and understand the environment. Feedback received in this manner reveals informative sensory signals that would otherwise not be present and are especially important for grasping and manipulation.

We have worked on problems where the robot augments visual data with tactile feedback to better understand the spatial structure of the environment and objects. We have also worked on learning top-down saliency.

Research projects and papers:
Interactive Perception
Global Object Shape Reconstruction by Fusing Visual and Tactile Data
Modeling Top-down Saliency for Visual Object Search
Interactive Perception: Leveraging Action in Perception and Perception in Action

Real-time Perception meets Reactive Motion Generation

We show our real-time perception methods integrated with reactive motion generation on a real robotic platform performing manipulation tasks. For details, check out the project here!

 

Robust Probabilistic Robot Arm Tracking

We propose probabilistic articulated real-time tracking for robot manipulation. For details, check out the paper.

This video visualizes the performance given different sensory input to estimate the pose and joint configuration of a robot arm. Perfect performance is achieved if the colored overlay matches the arm in the image.

 

Robust Probabilistic Object Tracking

We developed a set of methods that is robust to strong and long terms occlusions and noisy, high-dimensional measurements. The following video visualizes our object tracking method for robust visual tracking under strong occlusions that is based on a particle filter.

 

Dual Execution of Optimized Contact Interaction Trajectories

This video showcases a method which optimizes trajectories that are in contact with the environment to exploit these constraints for more robust reaching of a given target. It re-plans these trajectories online using force feedback.

 

Probabilistic Real-Time Tracking

We developed a comprehensive suite of robust, real-time visual tracking methods. More details are provided on the project page.

We released our methods as open source code in the Bayesian object tracking project.
We provide an easy entry point on our getting-started page.

Data Sets

We also provide data sets that allow quantitative evaluation of alternative methods. They contain real depth images from RGB-D cameras and high-quality ground truth annotations collected with a VICON motion capture system.

Robot Arm Tracking

The below pictures shows three samples of the data set that were recorded on our robot Apollo. Sequences contain situations with fast to slow robot arm as well as camera motion and none or very severe, long-term occlusions.

For downloading the data set and further details we refer to the github pages.

Object Tracking

The below picture shows each object that is contained in the data set.

For downloading the data set and further details we refer to the github pages.


Leveraging Big Data for Grasp Planning

We recently created a database containing over 700.000 data points for learning how to grasp given only partial sensory data. For more details, check out the project page. Please download the data from here!. On the same page, you find code to query the database as well as a docker image providing all the necessary libraries.


Robot Arm Pose Estimation through Pixel-Wise Part Classification

We proposed different learning approaches towards hand-eye manipulation. For more details, check out the project page. For generating simulated data for the paper on arm pose estimation, we used a very realistic kinect simulator. The code for this simulator can be found here.


Active Realtime Segmentation

This package implements a real-time active 3D scene segmentation. It is based on an implementation of Belief Propagation on the GPU. Example code for segmenting offline images and of images being published on ros topics is available in the package active_realtime_segmentation.

Related to this object_segmentation_gui implements an rviz plugin for interactive segmentation using the real-time segmentation method from above.

rgbd_assembler provides a helper package porting RGB information from the wide-field cameras of the PR2 to its monochrome narrow-field cameras through 3D reconstruction.

The package fast_plane_detection extract the dominant plane in a scene in real-time. It is a submodule from the above mentioned segmentation module.


Mind the Gap - Robotic Grasping under Incomplete Observation

In the project on 3D object reconstruction fusing visual and tactile data, we tested how well we can predict the global shape of an object when assuming that they are symmetric. We tested the proposed method on the data that can be downloaded here

The code associated with this data can be found here.


Xenomai and RTNet Interface for Kuka LBR IV Arms

Our robot Apollo consists of two Kuka light-weight arms that each require a communication link to a remote machine which can respond in 1ms. We developed an adaptation of the Kuka-provided FRI communication interface to Xenomai+RTNet which can be downloaded here.

 

 


Facial Expression Kit

We use a modified iCub facial expression kit for our robot Apollo. You can find a catkin wrapper to control the iCub facial expression kit here.

 

 

 

 

Our research is funded by the Max Planck Society, the German Research Foundation (DFG) through the CRC on Robust Vision and by the Max Planck ETH Center for Learning Systems.

 

am Thumb sm dscf3163  2
Jeannette Bohg (Group leader)
Research Group Leader
am Thumb sm dkappler medium
Daniel Kappler
Ph.D. Student
am Thumb sm wuethrich medium
Manuel Wüthrich
Ph.D. Student
am Thumb sm jan profile
Jan Issac
Alumni
am Thumb sm alina
Alina Kloss
Ph.D. Student
am usc Thumb sm sankaran
Bharath Sankaran
Ph.D. Student
am Thumb sm slika dokumenti1
Hamza Merzic
Graduate Student

Collaborators

We are fortunate to be working with great colleagues and researchers at the Max Planck Institute (MPI) for Intelligent Systems, Tübingen, as well as from other international research institutions.

Collaborators at MPI Tübingen

External collaborators

 

Alumni

Former members of our group.

  • Anna Deichler (Internship, 2017)
  • Carlos Rubert (Internship, 2016), now: PhD student at UJI
  • Ke Wang (Master Thesis, 2016)
  • Andrea Bajcsy (Internship, 2016), now: PhD student at UC Berkeley
  • Alina Kloss (Master thesis, 2015), now: PhD student with us
  • Felix Widmaier (Master thesis, 2015)
  • Thibault Portigliatti (Internship 2015), now: Student at ENSTA Paris Tech
  • Alonso Marco Valle (Master thesis, 2015), now: PhD student at AMD
  • Holger Kaden (Diploma thesis, 2014)
  • Jan Issac (Diploma thesis, 2014), now: Scientific Programmer with us
  • Sophie Laturnus (Bachelor thesis, 2014)
  • Claudia Pfreundt (Bachelor thesis, 2014)

42 results

2017


Thumb xl img
Combining learned and analytical models for predicting action effects

Kloss, A., Schaal, S., Bohg, J.

arXiv, 2017 (article) Submitted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, these dynamics are described by physics-based analytical models, which may however be very hard to find for complex problems. More recently, we have seen learning approaches that can predict the effect of more complex physical interactions directly from sensory input. However, it is an open question how far these models generalize beyond their training data. In this work, we analyse how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a neural network to convert the raw sensory data into a suitable representation that can be consumed by the analytical model and compare this approach to using neural networks for both, perception and prediction. Our results show that the combined method outperforms the purely learned version in terms of accuracy and generalization to push actions not seen during training. It also performs comparable to the analytical model applied on ground truth input values, despite using raw sensory data as input.

arXiv pdf link (url) [BibTex]


Thumb xl screen shot 2017 08 01 at 15.41.10
On the relevance of grasp metrics for predicting grasp success

Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.

In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted

Abstract
We aim to reliably predict whether a grasp on a known object is successful before it is executed in the real world. There is an entire suite of grasp metrics that has already been developed which rely on precisely known contact points between object and hand. However, it remains unclear whether and how they may be combined into a general purpose grasp stability predictor. In this paper, we analyze these questions by leveraging a large scale database of simulated grasps on a wide variety of objects. For each grasp, we compute the value of seven metrics. Each grasp is annotated by human subjects with ground truth stability labels. Given this data set, we train several classification methods to find out whether there is some underlying, non-trivial structure in the data that is difficult to model manually but can be learned. Quantitative and qualitative results show the complexity of the prediction problem. We found that a good prediction performance critically depends on using a combination of metrics as input features. Furthermore, non-parametric and non-linear classifiers best capture the structure in the data.

[BibTex]

[BibTex]


Thumb xl octo turned
Real-time Perception meets Reactive Motion Generation

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

https://arxiv.org/abs/1703.03512, ArXiv, 2017 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

arxiv video video Project Page [BibTex]


Thumb xl fig  quali  arm
Probabilistic Articulated Real-Time Tracking for Robot Manipulation

(Finalist of Best Robotic Vision Paper Award of ICRA 2017)

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.

IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)

Abstract
We propose a probabilistic filtering method which fuses joint measurements with depth images to yield a precise, real-time estimate of the end-effector pose in the camera frame. This avoids the need for frame transformations when using it in combination with visual object tracking methods. Precision is achieved by modeling and correcting biases in the joint measurements as well as inaccuracies in the robot model, such as poor extrinsic camera calibration. We make our method computationally efficient through a principled combination of Kalman filtering of the joint measurements and asynchronous depth-image updates based on the Coordinate Particle Filter. We quantitatively evaluate our approach on a dataset recorded from a real robotic platform, annotated with ground truth from a motion capture system. We show that our approach is robust and accurate even under challenging conditions such as fast motion, significant and long-term occlusions, and time-varying biases. We release the dataset along with open-source code of our approach to allow for quantitative comparison with alternative approaches.

arXiv video code and dataset video PDF DOI Project Page [BibTex]


Thumb xl robot legos
Interactive Perception: Leveraging Action in Perception and Perception in Action

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.

IEEE Transactions on Robotics, June 2017 (article)

Abstract
Recent approaches in robotics follow the insight that perception is facilitated by interactivity with the environment. These approaches are subsumed under the term of Interactive Perception (IP). We argue that IP provides the following benefits: (i) any type of forceful interaction with the environment creates a new type of informative sensory signal that would otherwise not be present and (ii) any prior knowledge about the nature of the interaction supports the interpretation of the signal. This is facilitated by knowledge of the regularity in the combined space of sensory information and action parameters. The goal of this survey is to postulate this as a principle and collect evidence in support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of Interactive Perception. We close this survey by discussing the remaining open questions. Thereby, we hope to define a field and inspire future work.

Version on arXiv Project Page [BibTex]

Version on arXiv Project Page [BibTex]


Thumb xl img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P. F., Prescott, T. J., Bohg, J., Engel, A. K., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


Thumb xl looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


Thumb xl pic for website small
Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles

Widmaier, F., Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
To achieve accurate vision-based control with a robotic arm, a good hand-eye coordination is required. However, knowing the current configuration of the arm can be very difficult due to noisy readings from joint encoders or an inaccurate hand-eye calibration. We propose an approach for robot arm pose estimation that uses depth images of the arm as input to directly estimate angular joint positions. This is a frame-by-frame method which does not rely on good initialisation of the solution from the previous frames or knowledge from the joint encoders. For estimation, we employ a random regression forest which is trained on synthetically generated data. We compare different training objectives of the forest and also analyse the influence of prior segmentation of the arms on accuracy. We show that this approach improves previous work both in terms of computational complexity and accuracy. Despite being trained on synthetic data only, we demonstrate that the estimation also works on real depth images.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl ranking top 1
Optimizing for what matters: the Top Grasp Hypothesis

Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
In this paper, we consider the problem of robotic grasping of objects when only partial and noisy sensor data of the environment is available. We are specifically interested in the problem of reliably selecting the best hypothesis from a whole set. This is commonly the case when trying to grasp an object for which we can only observe a partial point cloud from one viewpoint through noisy sensors. There will be many possible ways to successfully grasp this object, and even more which will fail. We propose a supervised learning method that is trained with a ranking loss. This explicitly encourages that the top-ranked training grasp in a hypothesis set is also positively labeled. We show how we adapt the standard ranking loss to work with data that has binary labels and explain the benefits of this formulation. Additionally, we show how we can efficiently optimize this loss with stochastic gradient descent. In quantitative experiments, we show that we can outperform previous models by a large margin.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl retrieved templates 3
Exemplar-based Prediction of Object Properties from Local Shape Similarity

Bohg, J., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We propose a novel method that enables a robot to identify a graspable object part of an unknown object given only noisy and partial information that is obtained from an RGB-D camera. Our method combines the benefits of local with the advantages of global methods. It learns a classifier that takes a local shape representation as input and outputs the probability that a grasp applied at this location will be successful. Given a query data point that is classified in this way, we can retrieve all the locally similar training data points and use them to predict latent global object shape. This information may help to further prune positively labeled grasp hypotheses based on, e.g. relation to the predicted average global shape or suitability for a specific task. This prediction can also guide scene exploration to prune object shape hypotheses. To learn the function that maps local shape to grasp stability we use a Random Forest Classifier. We show that our method reaches the same classification performance as the current state-of-the-art on this dataset which uses a Convolutional Neural Network. Additionally, we exploit the natural ability of the Random Forest to cluster similar data. For a positively predicted query data point, we retrieve all the locally similar training data points that are associated with the same leaf nodes of the Random Forest. The main insight from this work is that local object shape that affords a grasp is also a good predictor of global object shape. We empirically support this claim with quantitative experiments. Additionally, we demonstrate the predictive capability of the method on some real data examples.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.56.20
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.48.37
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

Video PDF DOI Project Page Project Page [BibTex]

Video PDF DOI Project Page Project Page [BibTex]


Thumb xl screen shot 2015 12 04 at 15.11.43
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference, Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

Web link (url) DOI Project Page Project Page [BibTex]

2015


Thumb xl picture for website
Robot Arm Tracking with Random Decision Forests

Widmaier, F.

Eberhard-Karls-Universität Tübingen, May 2015 (mastersthesis)

Abstract
For grasping and manipulation with robot arms, knowing the current pose of the arm is crucial for successful controlling its motion. Often, pose estimations can be acquired from encoders inside the arm, but they can have significant inaccuracy which makes the use of additional techniques necessary. In this master thesis, a novel approach of robot arm pose estimation is presented, that works on single depth images without the need of prior foreground segmentation or other preprocessing steps. A random regression forest is used, which is trained only on synthetically generated data. The approach improves former work by Bohg et al. by considerably reducing the computational effort both at training and test time. The forest in the new method directly estimates the desired joint angles while in the former approach, the forest casts 3D position votes for the joints, which then have to be clustered and fed into an iterative inverse kinematic process to finally get the joint angles. To improve the estimation accuracy, the standard training objective of the forest training is replaced by a specialized function that makes use of a model-dependent distance metric, called DISP. Experimental results show that the specialized objective indeed improves pose estimation and it is shown that the method, despite of being trained on synthetic data only, is able to provide reasonable estimations for real data at test time.

PDF Project Page [BibTex]

2015

PDF Project Page [BibTex]


Thumb xl posterior
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

PDF Project Page Project Page [BibTex]

PDF Project Page Project Page [BibTex]


Thumb xl screen shot 2015 08 22 at 21.47.37
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


Thumb xl bottle noise
Leveraging Big Data for Grasp Planning

Kappler, D., Bohg, B., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
We propose a new large-scale database containing grasps that are applied to a large set of objects from numerous categories. These grasps are generated in simulation and are annotated with different grasp stability metrics. We use a descriptive and efficient representation of the local object shape at which each grasp is applied. Given this data, we present a two-fold analysis: (i) We use crowdsourcing to analyze the correlation of the metrics with grasp success as predicted by humans. The results show that the metric based on physics simulation is a more consistent predictor for grasp success than the standard ε-metric. The results also support the hypothesis that human labels are not required for good ground truth grasp data. Instead the physics-metric can be used to generate datasets in simulation that may then be used to bootstrap learning in the real world. (ii) We apply a deep learning method and show that it can better leverage the large-scale database for prediction of grasp success compared to logistic regression. Furthermore, the results suggest that labels based on the physics-metric are less noisy than those from the ε-metric and therefore lead to a better classification performance.

PDF data DOI Project Page [BibTex]

PDF data DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 22 at 22.13.35
Policy Learning with Hypothesis Based Local Action Selection

Sankaran, B., Bohg, J., Ratliff, N., Schaal, S.

In Reinforcement Learning and Decision Making, 2015 (inproceedings)

Abstract
For robots to be able to manipulate in unknown and unstructured environments the robot should be capable of operating under partial observability of the environment. Object occlusions and unmodeled environments are some of the factors that result in partial observability. A common scenario where this is encountered is manipulation in clutter. In the case that the robot needs to locate an object of interest and manipulate it, it needs to perform a series of decluttering actions to accurately detect the object of interest. To perform such a series of actions, the robot also needs to account for the dynamics of objects in the environment and how they react to contact. This is a non trivial problem since one needs to reason not only about robot-object interactions but also object-object interactions in the presence of contact. In the example scenario of manipulation in clutter, the state vector would have to account for the pose of the object of interest and the structure of the surrounding environment. The process model would have to account for all the aforementioned robot-object, object-object interactions. The complexity of the process model grows exponentially as the number of objects in the scene increases. This is commonly the case in unstructured environments. Hence it is not reasonable to attempt to model all object-object and robot-object interactions explicitly. Under this setting we propose a hypothesis based action selection algorithm where we construct a hypothesis set of the possible poses of an object of interest given the current evidence in the scene and select actions based on our current set of hypothesis. This hypothesis set tends to represent the belief about the structure of the environment and the number of poses the object of interest can take. The agent's only stopping criterion is when the uncertainty regarding the pose of the object is fully resolved.

Web Project Page [BibTex]


Thumb xl tracking
The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems

Wüthrich, M., Bohg, J., Kappler, D., Pfreundt, C., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
Parametric filters, such as the Extended Kalman Filter and the Unscented Kalman Filter, typically scale well with the dimensionality of the problem, but they are known to fail if the posterior state distribution cannot be closely approximated by a density of the assumed parametric form. For nonparametric filters, such as the Particle Filter, the converse holds. Such methods are able to approximate any posterior, but the computational requirements scale exponentially with the number of dimensions of the state space. In this paper, we present the Coordinate Particle Filter which alleviates this problem. We propose to compute the particle weights recursively, dimension by dimension. This allows us to explore one dimension at a time, and resample after each dimension if necessary. Experimental results on simulated as well as real data con- firm that the proposed method has a substantial performance advantage over the Particle Filter in high-dimensional systems where not all dimensions are highly correlated. We demonstrate the benefits of the proposed method for the problem of multi-object and robotic manipulator tracking.

arXiv Video Bayesian Filtering Framework Bayesian Object Tracking DOI Project Page [BibTex]

2014


Thumb xl screen shot 2014 07 09 at 15.49.27
Robot Arm Pose Estimation through Pixel-Wise Part Classification

Bohg, J., Romero, J., Herzog, A., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA) 2014, pages: 3143-3150, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (inproceedings)

Abstract
We propose to frame the problem of marker-less robot arm pose estimation as a pixel-wise part classification problem. As input, we use a depth image in which each pixel is classified to be either from a particular robot part or the background. The classifier is a random decision forest trained on a large number of synthetically generated and labeled depth images. From all the training samples ending up at a leaf node, a set of offsets is learned that votes for relative joint positions. Pooling these votes over all foreground pixels and subsequent clustering gives us an estimate of the true joint positions. Due to the intrinsic parallelism of pixel-wise classification, this approach can run in super real-time and is more efficient than previous ICP-like methods. We quantitatively evaluate the accuracy of this approach on synthetic data. We also demonstrate that the method produces accurate joint estimates on real data despite being purely trained on synthetic data.

video code pdf DOI Project Page [BibTex]

2014

video code pdf DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 23 at 13.52.44
Learning of Grasp Selection based on Shape-Templates

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.

Autonomous Robots, 36(1-2):51-65, Springer US, January 2014 (article)

Abstract
The ability to grasp unknown objects still remains an unsolved problem in the robotics community. One of the challenges is to choose an appropriate grasp configu- ration, i.e., the 6D pose of the hand relative to the object and its finger configuration. In this paper, we introduce an algo- rithm that is based on the assumption that similarly shaped objects can be grasped in a similar way. It is able to synthe- size good grasp poses for unknown objects by finding the best matching object shape templates associated with previously demonstrated grasps. The grasp selection algorithm is able to improve over time by using the information of previous grasp attempts to adapt the ranking of the templates to new situa- tions. We tested our approach on two different platforms, the Willow Garage PR2 and the Barrett WAM robot, which have very different hand kinematics. Furthermore, we compared our algorithm with other grasp planners and demonstrated its superior performance. The results presented in this paper show that the algorithm is able to find good grasp configura- tions for a large set of unknown objects from a relatively small set of demonstrations, and does improve its performance over time.

video pdf DOI Project Page Project Page [BibTex]


Thumb xl screen shot 2015 08 22 at 22.32.46
Dual Execution of Optimized Contact Interaction Trajectories

Toussaint, M., Ratliff, N., Bohg, J., Righetti, L., Englert, P., Schaal, S.

In Proceedings of the International Conference on Intelligent Robots and Systems, Chicago, IL, October 2014 (inproceedings)

Abstract
Efficient manipulation requires contact to reduce uncertainty. The manipulation literature refers to this as funneling: a methodology for increasing reliability and robustness by leveraging haptic feedback and control of environmental interaction. However, there is a fundamental gap between traditional approaches to trajectory optimization and this concept of robustness by funneling: traditional trajectory optimizers do not discover force feedback strategies. From a POMDP perspective, these behaviors could be regarded as explicit obser- vation actions planned to sufficiently reduce uncertainty thereby enabling a task. While we are sympathetic to the full POMDP view, solving full continuous-space POMDPs in high-dimensions is hard. In this paper, we propose an alternative approach in which trajectory optimization objectives are augmented with new terms that reward uncertainty reduction through contacts, explicitly promoting funneling. This augmentation shifts the responsibility of robustness toward the actual execution of the optimized trajectories. Directly tracing trajectories through configuration space would lose all robustnessâ??dual execution achieves robustness by devising force controllers to reproduce the temporal interaction profile encoded in the dual solution of the optimization problem. This work introduces dual execution in depth and analyze its performance through robustness experiments in both simulation and on a real-world robotic platform.

PDF Video DOI Project Page [BibTex]

PDF Video DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 22 at 22.50.12
Data-Driven Grasp Synthesis - A Survey

Bohg, J., Morales, A., Asfour, T., Kragic, D.

IEEE Transactions on Robotics, 30, pages: 289 - 309, IEEE, April 2014 (article)

Abstract
We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]

2013


Thumb xl screen shot 2015 09 13 at 11.56.01
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In IEEE International Symposium on Safety, Security, and Rescue Robotics, pages: 1-4, Linköping, 2013 (inproceedings)

[BibTex]

2013

[BibTex]


Thumb xl screen shot 2015 08 23 at 00.29.36
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl impact battery
Probabilistic Object Tracking Using a Range Camera

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3195-3202, IEEE, November 2013 (inproceedings)

Abstract
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the current object pose. Depending on whether a robot or a human manipulates the object, we employ a process model with or without knowledge of control inputs. Observations are obtained from a range camera. As opposed to previous object tracking methods, we explicitly model self-occlusions and occlusions from the environment, e.g, the human or robotic hand. This leads to a strongly non-linear observation model and additional dependencies in the Bayesian network. We employ a Rao-Blackwellised particle filter to compute an estimate of the object pose at every time step. In a set of experiments, we demonstrate the ability of our method to accurately and robustly track the object pose in real-time while it is being manipulated by a human or a robot.

arXiv Video Code Video DOI Project Page [BibTex]

arXiv Video Code Video DOI Project Page [BibTex]


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]

2012


no image
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, Jeannette, Welke, Kai, León, Beatriz, Do, Martin, Song, Dan, Wohlkinger, Walter, Aldoma, Aitor, Madry, Marianna, Przybylski, Markus, Asfour, Tamim, Marti, Higinio, Kragic, Danica, Morales, Antonio, Vincze, Markus

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, 2012 (inproceedings)

DOI [BibTex]

2012

DOI [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 11.48.38 am
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

2011


Thumb xl screen shot 2015 08 23 at 15.47.13
Multi-Modal Scene Understanding for Robotic Grasping

Bohg, J.

(2011:17):vi, 194, Trita-CSC-A, KTH Royal Institute of Technology, KTH, Computer Vision and Active Perception, CVAP, Centre for Autonomous Systems, CAS, KTH, Centre for Autonomous Systems, CAS, December 2011 (phdthesis)

Abstract
Current robotics research is largely driven by the vision of creating an intelligent being that can perform dangerous, difficult or unpopular tasks. These can for example be exploring the surface of planet mars or the bottom of the ocean, maintaining a furnace or assembling a car. They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, are already frequently performed by robots. Others are still completely out of reach. Especially, household robots are far away from being deployable as general purpose devices. Although advancements have been made in this research area, robots are not yet able to perform household chores robustly in unstructured and open-ended environments given unexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual and motor capabilities are necessary for the robot to perform common tasks in a household scenario. In that context, an essential capability is to understand the scene that the robot has to interact with. This involves separating objects from the background but also from each other.Once this is achieved, many other tasks become much easier. Configuration of object scan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and even state-of-the-art methods may fail. Given an incomplete, noisy and potentially erroneously segmented scene model, the questions remain how suitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of prediction mechanisms that allow it to hypothesize about parts of the scene it has not yet observed. Additionally, the robot can also quantify how uncertain it is about this prediction allowing it to plan actions for exploring the scene at specifically uncertain places. We consider multiple modalities including monocular and stereo vision, haptic sensing and information obtained through a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modal exploration, grasps can be inferred for each object hypothesis. Dependent on whether the objects are known, familiar or unknown, different methodologies for grasp inference apply. In this thesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed and open-loop manner showing the effectiveness of the proposed methods in real-world scenarios.

pdf [BibTex]

2011

pdf [BibTex]


Thumb xl kthexecution
Mind the gap - robotic grasping under incomplete observation

Bohg, J., Johnson-Roberson, M., Leon, B., Felip, J., Gratal, X., Bergstrom, N., Kragic, D., Morales, A.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 686-693, May 2011 (inproceedings)

Abstract
We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

pdf video code data DOI Project Page [BibTex]

pdf video code data DOI Project Page [BibTex]


Thumb xl multi modal 2
Enhanced visual scene understanding through human-robot dialog

Johnson-Roberson, M., Bohg, J., Skantze, G., Gustafson, J., Carlson, R., Rasolzadeh, B., Kragic, D.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3342-3348, 2011 (inproceedings)

Abstract
We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a `human in the loop' where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

pdf video DOI Project Page [BibTex]

pdf video DOI Project Page [BibTex]

2010


Thumb xl screen shot 2015 08 23 at 15.52.25
Enhanced Visual Scene Understanding through Human-Robot Dialog

Johnson-Roberson, M., Bohg, J., Kragic, D., Skantze, G., Gustafson, J., Carlson, R.

In Proceedings of AAAI 2010 Fall Symposium: Dialog with Robots, November 2010 (inproceedings)

pdf [BibTex]

2010

pdf [BibTex]


Thumb xl screen shot 2015 08 23 at 15.18.17
Scene Representation and Object Grasping Using Active Vision

Gratal, X., Bohg, J., Björkman, M., Kragic, D.

In IROS’10 Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics, October 2010 (inproceedings)

Abstract
Object grasping and manipulation pose major challenges for perception and control and require rich interaction between these two fields. In this paper, we concentrate on the plethora of perceptual problems that have to be solved before a robot can be moved in a controlled way to pick up an object. A vision system is presented that integrates a number of different computational processes, e.g. attention, segmentation, recognition or reconstruction to incrementally build up a representation of the scene suitable for grasping and manipulation of objects. Our vision system is equipped with an active robotic head and a robot arm. This embodiment enables the robot to perform a number of different actions like saccading, fixating, and grasping. By applying these actions, the robot can incrementally build a scene representation and use it for interaction. We demonstrate our system in a scenario for picking up known objects from a table top. We also show the system’s extendibility towards grasping of unknown and familiar objects.

video pdf slides [BibTex]

video pdf slides [BibTex]


Thumb xl screen shot 2015 08 23 at 14.17.02
Learning Grasping Points with Shape Context

Bohg, J., Kragic, D.

Robotics and Autonomous Systems, 58(4):362-377, North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, April 2010 (article)

Abstract
This paper presents work on vision based robotic grasping. The proposed method adopts a learning framework where prototypical grasping points are learnt from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labelled synthetic images. We evaluate and compare the performance of linear and non-linear classifiers. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 01.22.09
Attention-based active 3D point cloud segmentation

Johnson-Roberson, M., Bohg, J., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1165-1170, October 2010 (inproceedings)

Abstract
In this paper we present a framework for the segmentation of multiple objects from a 3D point cloud. We extend traditional image segmentation techniques into a full 3D representation. The proposed technique relies on a state-of-the-art min-cut framework to perform a fully 3D global multi-class labeling in a principled manner. Thereby, we extend our previous work in which a single object was actively segmented from the background. We also examine several seeding methods to bootstrap the graphical model-based energy minimization and these methods are compared over challenging scenes. All results are generated on real-world data gathered with an active vision robotic head. We present quantitive results over aggregate sets as well as visual results on specific examples.

pdf DOI [BibTex]

pdf DOI [BibTex]