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Abstract— We introduce and evaluate contact-based tech-
niques to estimate tactile properties and detect manipulation
events using a biomimetic tactile sensor. In particular, we
estimate finger forces, and detect and classify slip events. In
addition, we present a grip force controller that uses the
estimation results to gently pick up objects of various weights
and texture. The estimation techniques and the grip controller
are experimentally evaluated on a robotic system consisting of
Barrett arms and hands. Our results indicate that we are able
to accurately estimate forces acting in all directions, detect the
incipient slip, and classify slip with over 80% success rate.

I. INTRODUCTION

A service robot deployed in human environments must

be able to perform dexterous manipulation tasks under

many different conditions. These tasks include interacting

with unknown objects (e.g. grasping). Recent advances in

computer vision and range sensing enable robots to detect

objects reliably [1]. However, even with a correct pose and

location of an object, reliable grasping remains a problem.

Tactile sensors can be used to monitor gripper-object inter-

actions that are very important in grasping, especially when

it comes to fragile objects (see Fig. 1). These interactions

are otherwise difficult to observe and model.

Achieving human level performance in dexterous grasping

tasks will likely require richer tactile sensing than is currently

available [2]. Recently, biomimetic tactile sensors, designed

to provide more humanlike capabilities, have been developed.

These new sensors provide an opportunity to significantly

improve the robustness of robotic manipulation. In order

to fully use the available information, new estimation tech-

niques have to be developed. This paper presents a first

step towards estimating some tactile properties and detecting

manipulation events, such as slip, using biomimetic sensors.

In this work, we use the BioTac sensors [3] (Fig. 3) in

order to estimate forces, detect slip events and classify the

type of slip. Additionally, we present a grip controller that

uses the above techniques to improve grasp quality. The key

contributions of this work are: a) a force estimation technique

that outperforms the state of the art, b) two different slip

detection approaches that are able to detect the slip event up

to 35ms before it is detected by an accelerometer attached

to the object, c) a slip classifier that is able to classify the

types of the slip with over 80% accuracy, and d) potential

applications of the above techniques to robotic grasp control.
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Fig. 1: Robotic arm grasping a fragile object using a stan-

dard position controller (left) and the proposed force grip

controller (right).

II. RELATED WORK

Humans are capable of manipulating novel objects with

uncertain surface properties even when experiencing random

external perturbations [4]. Tactile sensing plays a crucial role

during these tasks [5]. As reported in [6], humans mainly

rely on tactile feedback for slip detection and contact force

estimation.

Previous work has taken inspiration from human grip

control. Romano et al. [7] propose and evaluate a robotic

grasp controller for a two-finger manipulator based on

human-inspired processing of data from tactile arrays. In

[8] an approach to control grip force using the BioTac is

presented. The approach adopts a conservative estimate of

the friction coefficient instead of estimating it on-the-fly.

However, a conservative estimate may result in damaging

fragile objects with excessive grip force. De Maria et al.

[9] propose a new slipping avoidance algorithm based on

integrated force/tactile sensors [10]. The algorithm includes

a tactile exploration phase aiming to estimate the friction

coefficient before grasping. It also uses a Kalman filter to

track the tangential component of the force estimated from

tactile sensing in order to adaptively change the grip force

applied by the manipulator. In our work, instead of a tactile

exploration phase, we continuously re-estimate the friction

coefficient while grasping the object.

Significant work has also focused on slip detection and

slip-based controllers. Heyneman and Cutkosky [11] present

a method for slip detection and try to distinguish between

finger/object and object/world slip events. Their approach
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is based on multidimensional coherence which measures

whether a group of signals is sampling a single input or

a group of incoherent inputs. Schoepfer et al. [12] present a

frequency-domain approach for incipient slip detection based

on information from a Piezo-Resistive Tactile Sensor. Our

work, however, is novel in using the BioTac sensors for these

tasks, which provide the robot with increased sensitivity and

frequency range over traditional sensors.

The slip classification problem has not been explored as

much as the other aspects of tactile estimation. Melchiorri

[13] addresses the problem of detecting both linear and

rotational slip by using an integrated suite comprised of

a force/torque and tactile sensors. However, this approach

neglects the temporal aspect of tactile data, which may be

useful in classifying manipulation events.

The BioTac sensors have been previously used to esti-

mate contact forces. In [14] an analytical approach based

on electrode impedances was used to extract normal and

tangential forces. In this work, we show that our machine

learning methods outperform this method substantially.

In [15] the authors also use the BioTac sensors to esti-

mate forces acting on a finger. Machine learning (Artificial

Neural Networks and Gaussian Mixture Models) are used

for learning the mapping from sensor values to forces. The

best performance is achieved by using neural networks with

regularization techniques. Here we extend this approach to a

network with multiple layers and show that it leads to better

estimation performance.

III. BIOMIMETIC TACTILE SENSOR

We present a haptically-enabled robot with the Barrett

arm/hand system whose three fingers are equipped with

novel biomimetic tactile sensors (BioTacs). Each BioTac (see

Fig. 2) consists of a rigid core housing an array of 19

electrodes surrounded by an elastic skin. The skin is inflated

with an incompressible and conductive liquid.

The BioTac consists of three complementary sensory

modalities: force, pressure and temperature. When the skin

is in contact with an object, the liquid is displaced, resulting

in distributed impedance changes in the electrode array

on the surface of the rigid core. The impedance of each

electrode tends to be dominated by the thickness of the liquid

between the electrode and the immediately overlying skin.

Slip-related micro-vibrations in the skin propagate through

the fluid and are detected as AC signals by the hydro-acoustic

pressure sensor. Temperature and heat flow are transduced

by a thermistor near the surface of the rigid core. For each

BioTac, we introduce a coordinate system that is attached to

the fingernail. (Fig. 3).

IV. APPROACH

In this section, we introduce different aspects of tactile-

based estimation that are useful in various manipulation

scenarios. The high-resolution and multi-modal properties of

the BioTac sensor enables us to estimate forces, detect and

classify the slip, and control the gripper using reaction forces

exerted on the fingers.
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Fig. 2: Cross-sectional schematic of the BioTac sensor

(adapted from [14]).
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Fig. 3: The coordinate frame of the BioTac sensor (adapted

from [14]).

A. Force Estimation

Reliable estimation of tri-axial forces (Fx, Fy, Fz) applied

on the robot finger, which are shown in Fig. 3, is important

for a robust finger control. In this work, we employ and

evaluate four methods to estimate these forces based on the

readings from the BioTac sensor.

Previous studies have shown that tri-axial forces can be

characterized based on the impedance changes on the 19

electrodes [14]. This method makes an assumption that each

electrode is only sensitive to forces that are normal to its

surface. In our first approach, tri-axial contact forces are

analytically estimated by a weighted sum of the normal

vectors (Nx,i, Ny,i, Nz,i) of the electrodes. The weights are

the impedance changes (Ei) on the electrodes:⎛
⎝Fx

Fy

Fz

⎞
⎠ =

19∑
i=1

⎛
⎝SxEiNx,i

SyEiNy,i

SzEiNz,i

⎞
⎠ ,

where (Sx, Sy, Sz) are scaling factors that convert calculated

contact forces into Newtons (N). They are learned with linear

regression using ground truth data [14].

To improve the quality of force estimation we apply two

other machine learning methods: Locally Weighted Projec-

tion Regression (LWPR) [16] and regression with neural

networks. LWPR is a nonparametric regression technique

that uses locally linear models to perform nonlinear function

approximation. Given N local linear models ψk(x), the

estimation of the function value is performed by computing

a weighted mean of the values of all local models:

f(x) =

∑N
k=1 wk(x)ψk(x)∑N

k=1 wk(x)
.

The weights determine how much influence each local model

has on the function value based on its distance from the

298



estimation point. The weights are commonly modelled by a

Gaussian distribution:

wk(x) = exp

(
−1

2
(x− ck)D(x− ck)

)
,

where ck are the centers of the Gaussians and D is the

distance metric. Locally weighted partial least squares re-

gression is used to learn the weights and the parameters of

each local model.

As our third approach, we use a single-hidden-layer neural

network (NN) that was proposed by [15] and [17]. The

hidden layer consists of 38 neurons, which is the doubled

number of inputs .We also propose a fourth approach, where

we use a multi-layer NN to learn the mapping from BioTac

electrode values to the finger forces. The network consists of

input, output and three hidden layers with 10 neurons each.

For both NN approaches we use neurons with the hyper-

bolic tangent sigmoid transfer function:

a =
2

1 + exp(−2n) − 1.

For the activation of the output layer we use a linear transfer

function, i.e. the output is a linear combination of the inputs

from the previous layer.

NNs are trained with the error back-propagation and

Levenberg-Marquardt optimization technique [18]. In order

to avoid overfitting of the training data we employ the early

stopping technique during training [19]. The data set is

divided into mutually exclusive training, validation and test

sets. While the network parameters are optimized on the

training set, the training stops once the performance on the

validation set starts decreasing.

B. Slip Detection

Robust slip detection is one of the most important features

needed in a manipulation task. Knowledge about slip may

help the robot to react such that the object does not fall out

of its gripper. In order to detect a slip event, two different

estimation techniques are used: a force-derivative method and

a pressure-based method.

The force-derivative method uses changes in the estimated

tangential force to detect slip. Because the gripper tangential

force should become larger as the robot is lifting an object off

a supporting surface, the negative changes of the tangential

force is used to detect the slip event. Based on the experience

from the experimentation, the threshold on the negative

tangential force derivative is set to −0.5N/s.

Slip is also detected using the pressure sensor, which

is digitized (12 bit resolution) in the BioTac. Since the

BioTac skin contains a pattern of human-like fingerprints,

it is possible to detect slip-related micro-vibration on the

BioTac skin when rubbing against textured surface of an

object. A bandpass filter (60-700Hz) is first employed to

filter the pressure signal. Second, the resulting signal was

rectified to estimate the ”vibration power or slip power”. Due

to differences between pressure sensor sampling frequency

(2.2kHz) and the onboard controller (300Hz), the slip

detection algorithm considers a 10ms time window (3 cycles

of the onboard controller). This guarantees 22 samples of

pressure readings in the time window. Slip is detected if 11
out of 22 pressure sensor values exceed the threshold. Based

on the experiments, the slip threshold is set to be twice as

large as the baseline vibration caused by the motors of the

robot.

C. Slip Classification

In the course of our experiments we observed two main

categories of object slip: linear and rotational. During linear

slip, the object maintains its orientation with respect to the

local end-effector frame but gradually slides out of the robot

fingers. During rotational slip, the center of mass of the

object tends to rotate about an axis normal to the grasp

surface, although the point of contact with the robot’s fingers

might stay the same. It is important to discriminate between

these two kinds of slip to react and control finger forces

accordingly. We notice that rotational slip requires much

stronger finger force response than linear slip in order to

robustly keep the object grasped within the robot hand [20].

To be able to classify linear and rotational slip, we train a

neural network to learn the mapping from the time-varying

BioTac electrode values to the slip class. To construct the fea-

tures, we take a certain time interval of electrode values and

combine all values inside the window into one long feature

vector, e.g. 100 consecutive timestamps of 19-dimensional

electrode values result in a 1900-dimensional input vector.

The architecture of the NN consists of input, output and one

hidden layer with 50 neurons. The hidden layer has a sigmoid

transfer function. The softmax activation function is used in

the output neurons. It produces the probabilities of the signal

sequence belonging to one of the slip classes.

Similar to the force estimation we use early stopping to

prevent overfitting. The network is trained with the Scaled

Conjugate Gradient back-propagation algorithm [21].

D. Grip Controller

In order to test the estimation of the forces and detection

of the slip event, we design a grip controller that is able

to take advantage of the estimated information. Appropriate

grip force control is required for the robot to manipulate

fragile objects without damaging or dropping them.

The control algorithm consists of two main stages, grip

initiation, and object lifting (Fig. 4). In grip initiation, the

robot fingers are position controlled to close on an object

until the estimated normal force (Fz) is above a certain

threshold. The threshold is chosen to be very small (0.2N ) in

order to avoid damaging the object. Once all the fingers are

in contact with the object, the position controller is stopped,

and the grip force controller is employed. The force control

is used for the entire object-lifting phase.

In order to establish the minimal required grip force, the

force tangential to the BioTac sensor Ft is estimated:

Ft =
√

F 2
x + F 2

y .

Since the tangential force is directly proportional to the

weight of the object, the grip force Fz is controlled based on
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Fig. 4: Control diagram of the grip controller.

the current estimation of the friction coefficient μ in addition

to some safety margin:

Fz =
Ft

μ
+ safety margin.

The friction coefficient is initially set to 2 based on the

known friction of the silicon skin of the BioTac and other

common materials. Since the initial friction coefficient is

not estimated accurately, slip may occur during the lifting

phase. Once slip is detected using the force-derivative-based

slip detection described earlier, the friction coefficient is

estimated more accurately online using the Coulomb friction

law:

μ =
Ft

Fz
.

The safety margin was chosen to be 10-40% to account for

object acceleration during manipulation and additional un-

certainties of the friction coefficient. Finally, the commanded

grip force Fz is updated according to the newly estimated

friction coefficient that provides the minimal force, which

is sufficient to lift the object. The grip control algorithm is

shown in Fig. 4.

V. EVALUATION AND DISCUSSION

A. Force Estimation

In order to evaluate different force estimation methods,

we collected a data set consisting of raw signals of 19

electrodes. The ground truth data were acquired using a force

plate that was rigidly attached to the table. The BioTac was

rigidly attached to the force plate as shown in Fig. 5. In

the experiment, the BioTac was perturbed manually multiple

times from various directions with a wide range of forces.

The data were collected with frequency 300Hz (over 17000

Fig. 5: Experimental setup for the force estimation com-

parison: the finger is pressed at different positions and

orientations against the force plate.

RMSE Test Set SMSE Test Set

1.0

1.5

2.0

0 08

0.12

0.16

0.0

0.5

Fx Fy Fz

0.00

0.04

0.08

Fx Fy Fz

2.0

RMSE Full Data Set

0.16

SMSE Full Data Set

y y

0.5

1.0

1.5

0.04

0.08

0.12

0.0

Fx Fy Fz

0.00

Fx Fy Fz

Analytical LWPR NN 1 layer NN 3 layers

Fig. 6: The performance comparison between force estima-

tion techniques. Analytical approach is outperformed by the

other methods. LWPR and 1-layer NN perform well on the

full data set but have low performance on the test set. 3-layer

NN avoids overfitting and yields good results on the test set.

individual force readings). The collected data sets were

divided into 30 seconds intervals of continuous electrode

readings. Afterwards, these intervals were randomly shuffled

and divided into 80% training and 20% test sets. Addition-

ally, during the training of NNs, 20% of the training set was

used for the validation set to prevent overfitting with the early

stopping technique.

Fig. 6 shows the results of the four compared methods

evaluated on the full and test sets. In both cases, common

estimation metrics were chosen: Root Mean Squared Error

(RMSE) of the force in N and unitless Standardized Mean

Squared Error (SMSE). SMSE is computed by dividing the

MSE by the variance of the data.

The analytical approach developed previously [14] is

outperformed by the other three methods. From the results,

we draw the conclusion that the 1-layer-NN from [17] and

LWPR methods overfitted to the data, i.e. they perform better

in the full dataset than the other methods but they yield
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Fig. 7: Example of force estimation with different methods

over time. From top to bottom: force estimation for dimen-

sions: Fx, Fy , Fz

inferior performance in the set that was not exposed in

the training. The 3-layer neural network approach, however,

achieved good results on the test set and avoided overfitting.

It illustrates that the deeper structure of the NN was able to

capture the high-dimensional force mapping more accurately.

On the test set, we could achieve the best RMSE of 0.43N
in the x-direction, 0.53N in the y-direction and 0.85N in the

z-direction.

It is also worth noting that there exists a significant

difference between different force directions in the case of

the RMSE evaluation. It can be explained by the range

of forces that were exerted on the sensor. Since Fz is the

vertical axis of the BioTac, the forces experienced during the

experiments vary more than in the other directions. SMSE

comparison is more appropriate in this case as it incorporates

the range of the data. The best SMSE values on the test set

were achieved with the 3-layer NN: 0.08 for the x-direction,

0.03 for the y-direction and 0.02 for the z-direction.

In addition to the absolute errors, it is important to see

how the estimation errors correspond to the actual forces

over time. An exemplary result is depicted in Fig. 7. One

problem of the analytical approach is that it has an offset

that differs in various situations. The assumption that each

electrode is mostly sensitive to skin compression along its
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Fig. 8: An example run of the slip detection experiment.

Using the BioTac sensor we are able to detect the slip

event before the IMU accelerometer attached to the object

measures any acceleration due to slip.

normal vector is not able to capture the non-linear patterns

given by the highly non-linear deformation on the silicon

skin of the BioTac. In the case of LWPR and NNs, the results

are similar. One can notice, however, that the LWPR force

estimation produces forces that are not as smooth as the NN

approaches. The difference between the two NN approaches

is too small to be noticed on this data set. Given the results

obtained from the test data set, the 3-layer NN approach

yields better performance than the other methods.

B. Slip Detection

We tested the previously described slip detection algo-

rithms on two objects with distinctive textures: a plastic jar

with smooth surface and a wooden block with rough texture

(see Fig. 9). In both cases, we attached an IMU to the objects

in order to detect the moment when the object starts moving.

In order to make the object slip, the robot first grasps and

picks up the object, and then opens its right finger by 0.04
rad. The collected data set consists of 20 slip events per

object.

An example run of the slip detection experiment using

the wooden block is depicted in Fig. 8. One can see that

using the pressure-based method, we were able to detect slip

even before it was noticed by the IMU with the pressure-

based method. It is also worth noting that the pressure-based

method can detect slip much sooner than the force-derivative

method. This may be caused by the higher sampling rate of

the pressure sensor. However, it is also the case that in the

very initial stage of slip (incipient slip) the microscopical

slip effects are not yet visible at the electrodes. Nonetheless,

the slight movement of the fingerprints is picked up by the

high-frequency pressure-based slip detection signal.

Statistical analysis of the experiments shows that the

robot is able to detect slip using the force-derivative method

18ms ± 4.9ms (the plastic jar) and 4.7ms ± 7.2ms (the

wooden block) after the movement is noticed by the
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Fig. 9: Different objects used for the experiments.

IMU. The pressure-based method detects slip even sooner:

32.8ms ± 4.2ms (the plastic jar) and 35.7ms ± 6.0ms(the

wooden block) before the object motion is detected by the

IMU. These results indicate that the BioTac is able to quickly

and reliably detect slip which is important for robust grip

control.

C. Slip Classification

To evaluate the NN approach for the classification of two

kinds of slip events, four objects were chosen: a wooden

block, oil bottle, wipes box and a jar with added weights

(see Fig. 9). For training, the robot grasped an object either

approximately at the center of mass of the object or at the

edge of the object. These two grasping methods caused either

linear (if grasped at the center of mass) or rotational slip of

the object while it was being picked up. In order to detect

slip, an IMU was attached to the object. For each object,

over 80 grasps were performed (40 for the linear slip and 40

for the rotational slip). The data set was randomly shuffled

and divided into the 80% training and 20% test sets. Similar

to the force estimation, 20% of the training set was used for

the validation during the NN training.

Results of the experiments are depicted in Fig. 10. For the

input of the NN, points from 100 consecutive timestamps

were selected, resulting in a 1900-dimensional input vector.

Each point in Fig. 10 corresponds to the last timestamp that

was taken into account as the NN input, i.e. the point when

we classify slip given 100 previous values. The moment

when slip was detected by the IMU is depicted by a

vertical line. As more data are gathered during an actual

slip, classification accuracy improves as expected.However,

it is worth noting that using the NN approach, the robot

is able to achieve approximately 80% classification rate,

before the IMU is even able to notice that the slip event

started. Our algorithm accurately detects the slip class even

before significant object motion is detected (using an IMU),

allowing more time for the robot to respond appropriately.
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Fig. 11: An example run of the grip controller on the plastic

jar that includes all of the grasping phases.

D. Grip Controller

The grip controller was evaluated using two different

objects with varying weight: a plastic jar (see Fig. 9) with

the weight ranging from 100g to 1500g and a plastic cup

(see Fig. 1, top) with the weight ranging from 10g to 500g. In

each experiment, the robot grasped the object approximately

at its center of mass, lifted it off the table, held in the air

and placed it back on the table.

Fig. 11 shows an example run of the grip controller.

During the reaching phase, the robot’s fingers detect the

contact with the plastic jar using the normal force estimation.

This is the moment when the grip force control is employed

(10 seconds in the experiment). When the robot starts to
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lift the jar weighted 800g, the grip force (Fz) starts to

increase proportionally to the tangential force (Ft) sensed on

the BioTac with 10% safety margin. The friction coefficient

(μ) is updated at approximately the 18th second of the

experiment, when the slip event is detected by the force-

derivative method. After the 20th second of the experiment,

the jar was successfully picked up and held in the air. Two

150g weight plates were added to the jar at the 32nd second

and the 38th second, consecutively. It is worth noting that the

grip controller detected the two slip events using the force-

derivative method and increased the grip force by 2.1N and

3N to prevent further slip. When the robot placed the jar back

on the table, there are large spikes in the slip detection signal

(at 48th second). These may be used to detect the collision

with the environment and release the objects without pressing

the jar on the table with excessive force.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we explored how one can use biomimetic

tactile sensors to extract useful tactile information needed

for robust robotic grasping and manipulation.
We performed estimation of normal and tangential forces

that normally occur during holding and manipulating objects.

Machine learning techniques were employed and evaluated

to learn the non-linear mapping from raw sensor values to

forces. As the experiments demonstrated, the best perfor-

mance was achieved using 3-layer neural network regression.
Different modalities available from the BioTac sensor

were used to perform detection of the slip event. The best

performance was observed with the pressure-based method,

where slip was detected more than 30ms before it was picked

up by an IMU accelerometer.
Slip classification into linear or rotational slip was ob-

served to be important for robust object handling due to

different requirements for finger force response. We achieved

80% classification success rate using a neural network

approach before the slip event was detected by an IMU

accelerometer. This indicates that the robot should be able

to change finger forces at a very early stage of the slip and

therefore, prevent the moving of the object inside the hand.

In future work, the controller that uses this classification will

be employed and evaluated.
In order to test the above mentioned estimation techniques,

we created a grip force controller that adjusts the gripping

force according to the forces acting on the fingers. We

presented an example run of the controller during the entire

grasping experiment. Our results indicate that, by using the

grip controller, the robot is able to successfully grasp even

easily deformable objects such as a plastic cup (Fig. 1).
At present, we are able to detect simple manipulation

events and estimate forces. In the future, we plan to predict

more high-level features such as grasp stability, which can

be used to plan high-level decisions to manipulate objects

successfully.
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