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Abstract. In this paper, we propose a method that generates grasping
actions for novel objects based on visual input from a stereo camera. We
are integrating two methods that are advantageous either in predicting
how to grasp an object or where to apply a grasp. The first one recon-
structs a wire frame object model through curve matching. Elementary
grasping actions can be associated to parts of this model. The second
method predicts grasping points in a 2D contour image of an object.
By integrating the information from the two approaches, we can gener-
ate a sparse set of full grasp configurations that are of a good quality.
We demonstrate our approach integrated in a vision system for complex
shaped objects as well as in cluttered scenes.

1 Introduction

Robotic grasping remains a challenging problem in the robotics community.
Given an object, the embodiment of the robot and a specific task, the amount of
potential grasps that can be applied to that object is huge. There exist numer-
ous analytical methods based on the theory of contact-level grasping [1]. Even
though these approaches work very well in simulation, they cannot simply be
applied to object models reconstructed from typically sparse, incomplete and
noisy sensor measurements.How to choose a feasible grasp from incomplete in-
formation about the object’s geometry poses an additional challenge. This paper
introduces a vision based grasping system that infers where and how to grasp
an object under these circumstances. This involves a decision about where the
hand is applied on the object and how it is orientated and configured.

Current state of the art methods usually approach this problem by concen-
trating on one of the two questions. The first group of systems, e.g. [2, 3] typically
infers grasps based on 3D features resulting in many hypotheses where to apply
the grasp. For each hypothesis, a hand orientation is determined. Heuristics are
then applied to prune the number of grasp hypotheses. A drawback of these ap-
proaches is the high dependency on the quality of the reconstructed data. The
second group of approaches, e.g. [4, 5] relies on 2D data and thus avoids the diffi-
culty of 3D reconstruction. Grasp positions are inferred from a monocular image
of an object. The difficulty here is the inference of a full grasp configuration from
2D data only. Additional 3D cues are required to infer the final grasp.



In this paper, we propose a method that aims at integrating 2D and 3D
based methods to determine both where and how to grasp a novel, previously
unseen object. The first part of the system matches contour segments in a stereo
image to reconstruct a 3D wire frame representation of the object. An edge image
containing only successfully matched contour segments serves as the input to the
second part of the system. Hypotheses about where a grasp can be applied on
the 2D contours are generated. By augmenting the 3D model with this 2D based
information, we can direct the search for planar object regions. Plane hypotheses
that are supported by contour points with a high grasping point probability will
carry a high weight. The normal of these planes then define the approach vectors
of the associated grasps. In that way both methods complement one another to
achieve a robust 3D object representation targeted at full grasp inference.

This paper is structured as follows. In the next chapter we review different
grasp inference systems that are applied in real world scenarios. In Sec. 3 we
give an overview of the whole system. Section 4 describes the contour match-
ing approach and Sec. 5 the grasp point inference system. This is followed by
Sec. 6 where the integration of these two models is described. An experimental
evaluation is given in Sec. 7 and the paper is concluded in Sec. 8.

2 Related Work

The work by [2] is related to our system in several aspects. A stereo camera
is used to extract a sparse 3D model consisting of local contour descriptors.
Elementary grasping actions (EGAs) are associated to specific constellations of
small groups of features. With the help of heuristics the huge number of resulting
grasp hypotheses is reduced. In our system however, the number of hypotheses
is kept small from the beginning by globally searching for planar regions of the
object model. [3] decompose a point cloud derived from a stereo camera into a
constellation of boxes. The simple geometry of a box and reachability constraints
due to occlusions reduce the number of potential grasps. A prediction of the grasp
quality of a specific grasp can be made with a neural network applied to every
reachable box face. In contrast to that, we drive the search for a suitable grasp
through information about 2D grasping cues. These have been shown to work
remarkably for grasping point detection in [4, 5].

In [4] an object is represented by a composition of prehensile parts. Grasping
point hypotheses for a new object are inferred by matching local features of it
against a codebook of learnt affordance cues that are stored along with relative
object position and scale. How to orientate the robotic hand to grasp these parts
is not solved. In [5] a system is proposed that infers a point at which to grasp an
object directly as a function of its image. The authors apply machine learning
techniques to train a grasping point model from labelled synthetic images of a
number of different objects. Since no information about the approach vector can
be inferred, the possible grasps are restricted to downward or outward grasps. In
this paper, we solve the problem of inferring a full grasp configuration from 2D
data by relating the 2D grasping cues to a 3D representation generated on-line.



There exist several other approaches that try to solve the problem of in-
ferring a full grasp configuration for novel objects by cue integration. In [6], a
stereo camera and a laser range scanner are applied in conjunction to obtain
a dense point cloud of a scene with several non-textured and lightly textured
objects. The authors extend their previous work to infer initial grasping point
hypotheses by analysing the shape of the point cloud within a sphere centred
around an hypothesis. This allows for the inference of approach vector and finger
spread. In our approach however, we apply a stereo camera only and are not de-
pendent on dense stereo matching. Due to the application of contour matching,
we can obtain sparse 3D models of non-textured and lightly textured objects.
[7] showed that their earlier 2D based approach is applicable when considering
arbitrarily shaped 3D objects. For this purpose, several views of the object are
analysed in terms of potential grasps. While the approach vector is fixed to be
either from the top or from the side, the fingertip positions are dependent on
the object shape and the kinematics of the manipulator. The best ranked grasp
hypothesis is then executed. In our approach, we are not restricted to specific
approach vectors whereas our grasp type is assumed to be one of the EGAs
defined in [2]. Additionally determining the fingertip positions with the method
proposed by [7] is regarded as future work. Finally, in [8] a framework is in-
troduced in which grasp hypotheses coming from different sources e.g. from [2]
are collected and modelled as grasp hypothesis densities. The grasp hypotheses
are strongly dependent on the quality of the 3D object model. The density will
therefore contain numerous potential grasps that may not be applicable at all.
The authors propose to build a grasp empirical density by sampling from the
hypotheses that are then grasped with the robot hand. In our case, we are also
inferring potential grasps that may not be applicable in practice. However, we
are not enumerating hypotheses from different sources but are integrating the
information to infer fewer and better hypotheses that are ranked according to
their support of 2D grasping cues.

3 System Overview

In our approach the process of grasp inference involves several steps: i) identifi-
cation, ii) feature extraction, iii) cue integration and iv) grasping. A flow chart
of the system is given in Fig. 1 and also shows the utilised hardware.

The first step involves figure-ground segmentation by means of fixation on
salient points in the visible scene [9]. A combination of peripheral and foveal
cameras is used that are mounted on a kinematic head. Figure 1 (b) and (c) show
the left peripheral and foveal views of the head and (d) shows the segmented
object.

In this paper, we focus on the feature extraction and cue integration. Full
3D reconstruction of objects with little or no texture from stereo vision is a
difficult problem. However, it is debatable if a complete object model is always
needed for grasping [7]. We propose a representation that is extractable from real
world sensors and rich enough to infer how and where to grasp the considered



Fig. 1. (a): System setup with 6 DoF KUKA arm, a 7 DoF SCHUNK hand and the
ARMAR 3 stereo head. (b,c): Left peripheral and foveal views. d-h: The steps of the
grasping system.

object. A general observation that has driven our choice of representation is that
many objects in a household scenario, including cups, plates, trays and boxes
have planar regions. According to [2] these regions along with their coplanar
relationships afford different EGAs. These grasps represent the simplest possible
two fingered grasps humans commonly use.

The several steps to build such an object model composed of surfaces are
shown in Fig. 1 (d-h). In the segmented foveal view (d) edges are detected
and matched across the stereo images to form a 3D wire frame model (e). The
projection of this wireframe in one of the images is used to predict where to grasp
the object (f). The 3D model is then augmented with this information to detect
planar regions that are supported by contour points with a high probability of
being graspable (g). The four hypotheses with largest support are indicated with
black lines, the others with dashed grey lines. The resulting surfaces provide
hypotheses for how to grasp the object. The best hypothesis with respect to
plane support and kinematic restrictions of the arm-hand configuration is finally
shown in (h).

4 Partial 3D Reconstruction of Objects

Dynamic Time Warping (DTW) is a dynamic programming method for aligning
two sequences. The method is described in detail in [10]. Below we give a brief
overview of the key points of the algorithm, which is an extension to [11]. The
different steps of the method are given in Fig. 2. The leftmost image shows the
left foveal view of the object. Canny is used to produce an edge image from



Fig. 2. Left: Left foveal view of object. Middle: Contours from left and right foveal
views. Right: Successfully matched contours.

which connected edge segments (contours) are extracted. Spurious contours are
filtered out by restricting their curvature energy and minimum length. The mid-
dle image pair shows the contour images from the left and right foveal views.
Matching is performed between these two views. DTW is used both for solv-
ing the correspondence problem, i.e. which contour that belongs to which, and
the matching problem, i.e. which point in the left contour corresponds to which
point in the right contour. The latter is performed by calculating dissimilari-
ties between the two contours based on the epipolar geometry, and finding the
alignment that minimises the total dissimilarity. The former is performed by
integrating the dissimilarity measure with gradient and curvature cues. This is
one extension to [11], who could solve the correspondence problem more easily.
Another difference is the extension of DTW to handle open and partial contours.

Many contours on the object surface correspond to texture. For 3D recon-
struction, as well as 2D grasping point detection as described in Sec. 5, we are
only interested in contours belonging to actual edges on the object. As seen in
the middle image in Fig. 2, many contours stemming from texture do not have a
corresponding contour in the other image and thus will be filtered in the DTW
algorithm. Furthermore, shorter contours with higher curvature are less likely to
be matched due to a too high total dissimilarity. The resulting matching is used
to generate a sparse 3D model of the object.

5 Detecting Grasping Points in Monocular Images

Given the wireframe model reconstructed with the method introduced in the
previous section, we search for planar regions that afford EGAs. As it will be
shown later, fitting of planes to this raw model will result in many hypotheses
stemming from noise and mismatches. In this section, we introduce a method
that forms heuristics for searching and weighting of hypotheses according to
their graspability. We introduce knowledge that comprises how graspable object
parts appear in 2D and how these cues are embedded in the global shape of
common household objects. Here, we are following a machine learning approach
and classify image regions as graspable or not. We briefly describe how our
feature vector is constructed and how the training of the model is done. A more
detailed description can be found in [12].
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Fig. 3. Example of deriving the shape context descriptor for the matched contours
shown in Fig. 2. (a) Sampled points of the contour with tangent direction. (b) All
vectors from one point to all the other sample points. (¢) Histogram with 12 angle bins
and 5 log-radius bins. (d) Classification of the descriptors in each image patch.

Shape context (SC) [13] is a widely applied descriptor that encodes the prop-
erty of relative shape, i.e. the relation of the global object shape to a local point
on it. The descriptor is invariant to 2D rotation, scale and translation. Figure 3
shows an overview on the computation of SC. N samples are taken with a uni-
form distribution from the contour. For each point we consider the vectors that
lead to the remaining N — 1 sample points. We create a log polar histogram with
K angle and radius bins to comprise this information. For the feature vector, we
subdivide the image into 10 x 10 pixel patches. A patch descriptor is composed
by accumulating the histograms of all those sample points that lie in the patch.
We calculate the accumulated histograms at three different spatial scales centred
at the current patch and concatenate them to form the final feature descriptor.

This feature vector is then classified by a grasping point model as either
graspable or not. This model is an SVM that we trained off-line on the labeled
database developed in [5]. An example of the classification results with an SVM
trained on a pencil, a martini glass, a whiteboard eraser and two cups is shown
in Fig. 3 d). Patches with a high graspability are characterised by rounded
and parallel edges which indicate similarity to handles, rims or thin elongated
structures. However, the approach direction is not easily inferred.

6 Cue Integration

To generate grasping hypotheses, we are interested in finding planar surfaces,
i.e. finding contours that lie in the same plane. The set of plane hypotheses is
defined as IT = {m;}, m; = (7, i), where 7; is the normal and u; the centre
point on the plane. When searching for hypotheses, we start be selecting a point
p1 on one of the contours and a point py nearby. We assume that these points
are likely to lie in the same planar region(s) on the object. Then, there will be a
third point p3 on the remaining contours that defines such a region. By searching
over the set of potential p3, we try to find all these planes. Given pi, ps and
p3, a plane hypothesis 7; can be defined. Since the depth is quantised, the three
selected points may produce a non optimal plane. Therefore we use RANSAC [14]
over small contour regions defined by these points to optimise the plane. The
hypothesis is accepted or rejected depending on the amount of contour points
neighbouring p;, p2 and ps that are close enough to 7;. If accepted a more
exact m; is computed by performing regression on the full set of contour points



not exceeding a certain distance to 7;. After the planes related to p; have been
found, a new p; is selected and the procedure is repeated.

In order to restrict the search, whenever a contour point has been assigned to
a plane it will be unavailable when choosing p;. This will, apart from reducing
the computational time, drastically reduce the number of hypotheses and remove
most duplicates. This puts requirements on how the selection of p; is made. If
chosen badly, it is possible to miss good hypotheses if for instance p; is not chosen
from a contour corresponding to an actual edge. To solve this problem we use the
information from the 2D grasping point detection. We start by extracting local
maxima from the classification result. Because contour points in these regions
are likely to be graspable, we choose p; from among these. As we will show
in Sec. 7, this will result in a faster and more reliable search than randomly
choosing p;. The search for hypotheses continues until all points from regions
with local maxima have been considered. We enforce that the normals are in the
direction pointing away from the mean of all contour points.

As a final step planes are ranked according to graspability. For each plane

support(m) = Y w(ps)* P(pj)/ (M1 + o) (1)
j€{all points}

where w(p;) = 1—2 d(pj, ;) is the distance of p; to the plane m;,

m’
P(p,) is the probability that p; is a grasping point, and A 5 are the two largest
eigenvalues from PCA over the inliers. This gives a support value that favours
planes with dense contours whose points have a high graspability. Estimated
planes may have a normal that does not correspond perfectly to the normal of
the real plane. This plane will still get support from points that are close and are
likely to stem from the real plane. Normalising with the sum of the eigenvalues
ensures that planes without gaps are favoured over planes formed only from e.g.
two sides. It also reduces the support for planes with points from falsely matched
contours that will lie far from the actual object. Moreover, by calculating the
eigenvalues we are able to filter out degenerate planes that have a small extension
in one direction.

The normals of the final plane hypotheses are then defining the approach
direction of the grasp and the smallest eigenvector of the related set of contour
points the wrist orientation.

7 Experiments

The goal of the proposed method is to generate good grasping hypotheses for un-
known objects in a robust and stable manner. Furthermore, as few false positives
as possible should be generated. In this section, we will show that this is achieved
for objects and scenes of varying geometrical and contextual complexity.
Figure 4 shows different objects used for the experiments. The corresponding
matched contours are shown on the row below. The upper right of the figure
contains the output of the grasping point detection. Finally, the last row shows



the five planes with best support for each object. These four objects are selected
to pose different challenges to our system: The hole puncher has a complex
geometric structure, but with easily detectable edges. Due to many close parallel
contours on the tape roll, we get some false matches. The tea canister object is
highly textured, and its lid has many parallel edges which causes problems when
finding the top plane. The magnifier box resides in a more complex scene in which
Canny produces more broken edges that complicate the matching problem.

In all cases the two best hypotheses (red and green) shown in the bottom
row are graspable, and correspond to how a human probably would have picked
up the objects under the same conditions. For the puncher, the hypotheses give
the choice of picking up from the object’s front or top. This is an example of
one of the benefits of our method: we do not need to constrain the approach
direction. In the tape roll case there are several severe mismatches (marked in
the figure). These correspond to a depth error of up to 50 cm, and are actually
part of three plane hypotheses. Here the normalisation makes sure they get low
support. Because of the parallel edges on the tea canister’s lid, several hypotheses
with good support are found on the top. The red hypothesis gets more support
though, as it has more contour points close to the plane. In the case of the
magnifier box, matching is harder, and we get much fewer and shorter edges. The
longest contour is actually the one corresponding to the image of the magnifier.
This affects the results from the support computations since the contours from
the sides are not complete. The hypothesis from the right side clearly gets largest
support. When finally choosing a grasp configuration kinematic constraints or
other preferences will guide which of them to choose.

As mentioned in the previous section, the choice of the starting point is crucial
to the performance of plane detection. We compared the method described in
Sec. 6 to other approaches like random choice or a systematic search from the
longest to the shortest contour. The assumption behind the latter method is that
longer contours are more likely to originate from an actual edge of the object
rather than from texture. We have performed an extensive evaluation of each
method on the data in Fig. 4 to estimate their robustness, and will show how
the proposed method outperforms the random and sequential method. Given
the same input, all three methods will result in different plane hypotheses for
each run due to the application of RANSAC in the plane estimation phase. The
quality of a detected plane is measured by Eq. 1.

Figure 5 shows three representative examples for each of the three methods
applied to the magnifier box. The two plane hypotheses that have the highest
support are red and green. The best results for each method are shown in the
leftmost column. Our method produced results similar to the top left example
in Fig. 5 most times. The best result for the random selection only contains two
hypotheses corresponding to real planes. The other two examples contain cases of
missed planes (e.g. the top plane in the middle figure) and wrong planes being
preferred over hypotheses corresponding to real planes. As with our method,
the sequential selection produces more stable results. However, the problem of
missed planes and ranking wrong planes higher than real ones persists.



Fig. 4. Four objects, their matched contours, grasping point probabilities and finally
the five best hypotheses for each object. The hypotheses are coloured, from best to
worst, red, green, blue, cyan, magenta. False matches are circled in black. (Best viewed
in colour)

Fig. 5. Top row: Proposed method. Middle row: Random selection. Bottom row: Se-
quential selection. Colours in the same order as in Fig. 4 (Best viewed in colour)

In cases of simple hardly textured objects in non-cluttered scenes, all three
methods have a comparable performance. However, in real world applications
we need to deal with objects of arbitrary geometry in complex scenes in which
segmentation is hard due to sensory noise, clutter and overlaps.

8 Conclusion

We have presented a method for generating grasping actions for novel objects
based on visual input from a stereo camera. Two methods have been integrated.
One generates a wire frame object model through curve matching, and associates
EGAs to it. The other predicts grasping points in a 2D contour image of the
object. The first accurately predicts how to apply a grasp and the other where
to apply it. The integration generates a sparse set of good grasp hypotheses. We
have demonstrated the approach for complex objects and cluttered scenes.



Our future work will exploit the use of the method in an integrated learning
framework. Hypotheses will be generated as proposed and used for picking up
objects. The system will then be able to view the object from different directions
in order to generate a more detailed model.
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