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Abstract— A state estimation method is presented that allows u(k) y(k) - -
the designer to trade off estimator performance for communi- o System E Communicatio
cation bandwidth in a networked control system. The method is (k) - Logic
based on a time-varying Kalman filter and a communication de- : :
cision rule for each sensor: a sensor measurement is transmitted | |
and used to update the Kalman filter if its associated prediction - I I
variance exceeds a certain tolerable bound. The resulting - 4_?/(_]“2 ! :
equation for the estimation error variance is deterministic, - Estimator : |
which enables its off-line analysis. If a periodic solution to &(klk) |a---------- !
the variance equation is found, it facilitates a straight-forward
implementation of the communication decision: each sensor i #(k|k)

transmits its measurements with a fixed periodic sequence.
This state estimation method is applied in the feedback control

SySt_em of a cube bala_n_cmg on one of its edge_s. SD;] rotating designed in order to estimate the process stétg from a reduced number
bodies on the cube stabilize the system and constitute the agents ot measurements. Solid lines denote continuous data flowtr@esmission

in the networked control system: each one is equipped with local 4t every discrete time step), dashed lines denote discontinuous flow of
actuation, sensing, and computation, and the agents share their data.

sensor data over a broadcast network. Experimental results

compare the performance of the reduced communication state

estimation algorithm to a Kalman filter with full measurements.

Fig. 1. The design problem: state estimator and communicatigio kre

update the estimator if its associated prediction erraanae
exceeds a certain tolerable bound. Hence, a measurement is
. INTRODUCTION only used when it is required to meet a certain estimation
This paper considers the problem of estimating the stageérformance. The bounds represent tuning parameters that
of a dynamic system from multiple distributed sensorsallow one to trade off communication bandwidth for estima-
while at the same time seeking to reduce the number &Pn performance. The constraints define transmissiorsrule
sensor measurements that serve as input to the estimadbach sensor.
algorithm. While the number and the arrangement of sen- The estimator design problem is depicted in Fig. 1. The
sors is considered as given, the sensors’ transmit rates a§&stem stater(k) is estimated at discrete time instarits
variable. Since reducing the set of sensor data generafhom a subset of the measuremept®). A communication
decreases the estimator performance (provided the redudedic block selects the subsgtk) from the full measurement
sensor data is not defective), a designer would thus be @bleviector y(k) and sends the data over a network to the
trade off between estimator performance and communicatigate estimator. We assume an ideal communication network,
bandwidth. where the transmission of measurements is instantaneous
Networked control systems (NCSs) are an example of thend no data is lost. The physical representation of the com-
described scenario, where transmitting a sensor measatemeaunication logic block may be a sensor with computation
is associated with a certain cost. In NCSs, a multi-purposeapabilities, a network agent (possibly itself running atest
communication network is shared by multiple control, sensoestimator), or it may simply represent sensors with difiere
and actuator units, [1]. Accordingly, a sensor node transransmit rates. It is assumed that the system inp(ts are
mitting its measurement means that the other units cannkown to the state estimator.
use the network without increasing load-induced delays. In Actively reducing the transmission of data to a remote
wireless sensor networks, reducing the amount of transthitt estimator is known asontrolled communication[1]. Such
data often reduces the energy consumption on the seng§orithms have been proposed in [3]-[6], for example. In
nodes, [2]. previous work [6], the sending decision is based on real
We approach the problem of reduced communicatioime measurement data. The method presented here differs
state estimation by using a (standard) time-varying Kalmajp that the sending decision is based on the estimation error
filter combined with a constraint on the usage of sensfariance. Since the variance can be computed off-line, this
measurements: a particular sensor measurement is usechiproach offers a tractable solution. Specifically, if dqutic
_ _ _ _ solution of the estimation variance evolution is found, it
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Fig. 3. Rendering of the Balancing Cube, shown in the samatatien
as in Fig. 2. The cube has six rotating arms, one on each face.

results from the Balancing Cube testbed are given in Sec. IV.

Fig. 2. The Balancing Cube (edge length2m) is an example of The paper concludes with remarks in Sec. V.
a networked control system: six rotating bodies, each hasegsors,
actuation, and computational unit, share information overeawaork to

balance the cube on its edge. Il. REDUCED COMMUNICATION STATE ESTIMATOR

We consider the stochastic linear time-invariant system
the resulting communication logic. The periodic sending
sequence can be computed in advance and fixed for each (k) =Ax(k—1)+ Bu(k—1) +v(k—1) (1)

sensor. For two heterogeneous sensors, variance-based and y(k) = Cz(k) + w(k), @)
periodic scheduling of sensor transmissions have also been
studied in [7]. where k is the discrete time indexz(k), v(k) € R™;

The state estimator is a time-varying Kalman filter tha&(/{) e R™; y(k), w(k) € R?; and all matrices are of
handles the ar”yal of measurements at different rates. TE@rresponding dimensions. The process noise’ the measure-
proposed technique can therefore also be regarded asm@nt noise, and the initial stat0) are assumed mutually
method for designing a multi-rate Kalman filter, where thgndependent, Gaussian distributed withk) ~ A(0,Q),
update rates are determined based on upper bounds Bk) ~ N(0, R), andz(0) ~ N (zo, Py), where N (m, V)
the tolerable error variance. The resulting state estimat@enotes a normally distributed random variable with mean
switches periodically between different modes defined By th,, and covariance matri¥’. Furthermore, the paifA, C)
set of measurements available at an update step. Switchiggassumed detectabléd, Q) stabilizable, andi diagonal.
or periodic state estimators have been studied, for exampighe latter assumption means that the measurement noise
in [8]-[10], and references therein. is mutually independent for any two sensors considered,

The Balancing Cubeshown in Fig. 2 and 3 serves aswhich is often the case in practice. The presented state
the testbed to demonstrate the presented method. The ciga@imation method can, however, be readily extended to the

balances on one of its edges through the action of six rgfatinase of block diagonak by sending blocks of correlated
bodies on its inner faces. The rotating bodies carry a motqheasurements at once.

sensors, a computer, and a battery. Their computers share thThroughout this papej is used to index a single mea-
local sensor data over a Controller Area Network (CAN)grement. i.e. an element of the vectorAccordingly, C;
The cube therefore represents an example of a networkgdotes theith row of C' and R;; the jth diagonal element
control system with the rotating bodies being its agent® Thyt p \we use the index sef(k), a subset of 1,...,p}, to
reduced communication state estimation scheme of Fig. 1 i8note a selection of measurements at tk’né'i’]e r;otation
applied by implemgnting a copy of the same state estimat?gj]jej(k) is used to denote the matrix constructed from
on each agent. Being a broadcast network, the CAN ensui§iacking the rows; for all j € J(k); and diagR;;];c k)

the consistency of the state estimates in the network. denotes the diagonal matrix with entri&;, for j € J(k),
This paper is organized as follows: The equations fog jis diagonal.

the time-varying Kalman filter and associated constraints 0 ; i< \vell-known that the optimal state estimator for the

the usage of sensor measu_rements are presgntt_ed in S‘?CS))’stem (1), (2) with full measurementg(¢) = {1, ..., p})
Section 1l treats the special case of a periodic solutio the Kalman filter. which is restated in Sec. II-A. The
to the estimation error variance iteration and the obtaine nstraints on the 'usage of measurements ére sét up in

simplification of the communication logic. ExperimentaISeC. II-B and the corresponding Kalman filter equations for

1For a video of the Balancing Cube, please refer to the projetisite the. reduced set of measurememﬁ(ko < {17 s ,p}) are
http://ww. cube. et hz. ch. derived.



A. Kalman Filter with Full Set of Measurements update step in the Kalman filter below is omitted in case no
The Kalman filter recursions for the system (1), (2) cafheasurement is available at time

be written as We next state the Kalman filter equations for the system
(1), (9) and then make precise how the measurements (and
&(klk—1) = A2(k—1[k—1) + Bu(k—1) (3)  hence the matrice§(k) and (k)) are selected at each time
P(klk—1) = AP(k—1|k—1)AT +Q (4) step.

. For any given sequence diC'(k)}; and {R(k)}, the
K(k) = P(klk—1) CT(CP(klk—1)CT + R)™" (5) time-varying Kalman filter

B(klk) = (klk=1) + K(k) (y(k) = C2(klk=1)) ) (k1) = A#(k—1lk—1) + Bu(k—1) (10)
P(klk) = (I-K(k)C) P(klk—1) D Phlk—1) = AP(k—1k—1)AT +Q (11)
with the following meaning of the Kalman filter variables K (k) = P(klk—1) C‘T(k)
2(klk—1) = E[z(k)|Y(k—1),U(k—1)] N T -1 (12
#(k[#) = E (k) Y (k). U(K)] = ( BN f)) "
P(k|k—1) = Var[z(k)|Y(k—1),U(k—1)] 2(klk) = a(klk—1) + K (k) (y(k) ~C(R) (K] 1()23)
P(klk) = Varlz(k)(k), U (k)] P(kk) = (I=K (k)C (k) P(klk—1) (14)

where E|-| denotes the conditional expected value, Mar s the optimal estimator for the system (1), (9) (cf. [L1]heT
the conditional variance, ang? and ¢/ denote the sets of ggiimator keeps track of the state distribution conditibae

measurements and inputs up to tirgi.e. all measurementg(k) and inputs up to timé. Hence,
Y(k)={y() [0 <1<k} F(kk—1) = E[2(k)| P (k—1),U(k—1)]
Ulk) = {u(l) [0 < I <k} E(k{k) = E (k)| D (k) U(R)]

The filter is initialized by#(0/0) = x9 and P(0|0) = Fy. Pklk—1) =

To reflect the fact that for the filter (3)—(7) all sensor

measurementg(k) are communicated, it is referred to below

asfull communication Kalman filter where Y (k) denotes the collection of measuremeits),
It is well-known (cf. e.g. [11]) that the time-varying - N

Kalman filter (3)—(7) is theoptimal state estimator for the Y(k) = {y(l) [0=i< k}

considered problem class. Optimality, in this case, mez@is t ~ Among all possible sequencé€’(k)}, and {R(k)}x, we

the Kalman filter keeps track of the entire distribution of th now wish to choose those that Correspond to a reduced set

statex (k) conditioned on all measurements and inputs up tgf measurementg(k) C {1,...,p}. Following the idea out-

time k. lined in the introduction, the estimator update uses ordgé¢h
Under the condition that the pair, C') is detectable and measurements whose prediction variance exceeds a certain

(4, Q) is stabilizable, the Kalman filter recursion for thepound. Since the resulting estimator hence relies on a subse

prediction variance”(k|k—1) converges to a positive semi- of all measurement¥(k), its estimation variance is greater

Var [z(k) |V (k—1),U(k—1)]
P(k|k) = Var[z(k)|Y(k), U (k)]

definite matrixP, [11], i.e. than the variance of the full measurement Kalman filter (3)—
khm P(klk—1) = P >0, (7). Therefore, the prediction variance of measuremefi),
—00

Var[y; (k) | Y (k—1 —1)] = C;P(k|k—1)CT+R;; (1
which satisfies the discrete algebraic Riccati equation arfy; (k) | Y(h=1), U(k=1)] = G5 P(RIE-1)C} + 155 (15)

(DARE) is compared to its steady-state counterpart of the full mea-

p p p P 5 ts filter,

P = APAT + Q — APCT(CPCT + R)"\CPAT. (g) S omonts el )

P, = lem Var[y; (k) | Y(k—1),U(k-1)] = ijchJerj.
icati [ (16)

In order to reduce communication requirements, we NOWecordingly, we use the following rule to decide if a single

seek a state estimator for the system (1) that receives a tiMge asyremeny, (k) is transmitted for use in the Kalman filter
varying numberp(k) < p of measurements

B. Kalman Filter with Reduced Set of Measurements

update:
g(k) = C<k) l'(k) + ﬁ)(k), (9) transmityj(k) =
whereg(k), w(k) € RP®), (k) ~ N(0, R(k)). Notice that Var[y; (k) | Y(k—1),U(k—1)] — P,
i(k), w(k), C(k) € RFW*n and R(k) € RFW*PH) have iz = 05,

time varying dimensions, which includes the cagg) = 0; v

that is, at timek there is no measurement available at thavhich, with (15) and (16), simplifies to
estimator. In order to avoid special treatment of this case,

: . o _
we use the convention thg(k) = 0, and the measurement transmity; (k) < C; (P(klk=1) = P)Cj > §;P,,. (A7)



The tuning parameter§; capture the tolerable normalized (10)—(14) and the communication logic by (17). However,
deviation of each sensor's measurement prediction vagianm view of the fact that the Kalman filter iteration (21) can
from the full communication, steady-state variance. Fope computed off-line, it may be beneficial to analyze the
exampley; = 0 means no deviatiod; = 1 means deviation iteration for a given choice of threshold parametéys If
of Pyj, etc. Clearly, ifé; = 0 for all sensors, the reduced a periodic solution is found, it gives rise to a simplified
communication Kalman filter (10)—(14) is equivalent to thamplementation of the measurement sending decisions.

full communication filter (3)—(7). For (A, C) detectable andA, Q) stabilizable, the variance
Using the transmit rule (17), the index sétk) of all  of the full communication Kalman filter (3)—(7) converges
measurements used in the estimator at tinie to the unique solutionP > 0 of the the DARE (8).

Clearly, it cannot be generally expected that the reduced
communication Kalman filter (10)-(14) converges to the
same steady-state solution. We illustrate this point whid t
“f(?ﬂowing example: ifA is unstable and; is chosen large,
then if P(k) starts close t&, J(k) = ), and P(k) will grow
C(k) = [Cjljeram (19) according toP(k + 1) = AP(k)A” + Q; hence,P is not a

~ . solution.
(k) = diad Rjjljer)- (20) The Kalman filter iteration (21) may, however, have pe-

The sequence$C (k)}r and {R(k)}, are well defined riodi_c solution.s. An exa_mple of this ig ;hown .in the next
by (18), (19), (20) and knowledge d?(k|k—1). Together, section. A periodic solution of the prediction variancereer
the equations (11), (12), (14), (18), (19), and (20) prosPonds to fixed, periodic sending sequences for the sensors
vide recursive update equations for obtaining the seqencgiven by (17), and hence provides a straight-forward way
P(k|k—1), P(k|k), C(k), R(k) from the problem data/, for implementing the reduced communication state estimato
C, R, Q, Py), and the tuning parametess. Note that this is The definition of a periodic solution, and an immediate
fundamentally different from approaches such as [6], whef@operty that is useful for practical implementation, aireg
the decision whether to use a measurement in the estimatgrthe following: 3
update depends on the actual measurement ggta If Definition 1: A symmetric positive definite matrix@’ is
the decision depends on real time data, the Kalman filté@lled ax-periodic solutionto (21) if P = G*(P), where
variables P(k|k—1) and P(k|k) become random variables ¢" denotes thes times application of. .
themselves, whereas with the presented method, they can b&roposition 1: Let P be ax-periodic solution. IfP(1) =
computed off-line from the problem data. P, thenVk P(k) = Gmodk=15)(p),

Since the Kalman filter (10)—(14) is the optimal state  Proof: From the definition of a:-periodic solution it
estimator for any sequencé€'(k)}, and{R(k)}y, itis also  follows thatvm € N, P(mx + 1) = P. FurthermoreG*(P)

J(k)={j[0<j<p, C;(P(k|k=1) = P)C] > &;P,,},

(18)
and the corresponding time-dependent output and meas
ment noise variance matrices are

optimal for those sequences given by (18), (19), (20). leothfor ¢ =0,1,...,x — 1 are alsox-periodic solutions. Hence,
words, given the constraints (17) expressing the objettive Y/ € Nandvi € {0,1,...,k—1}, P(mr+i+1) = G'(P),
use “valuable” measurements only, the Kalman filter (10)from which the claim follows. u

(14) is the optimal state estimator. It is referred to bel@v
reduced communication Kalman filter ) _ o o _
To later study the evolution of the estimation error vari- One practical way to find a periodic solution is to simply

ance, the equations (11), (12), and (14) are combined to Simulate the Kalman filter iteration (21) initialized with
P(0) = P, and observe if a periodic solution exists for some

'y Seeking a Periodic Solution

P(k+1) = AP(k) A" + Q — AP(k) C"(P(k)) «. This practical approach is pursued in Sec. IV.
= - ST - -1 The question of existence of a periodic solution is an
’ (C(P(k)) P(k)C (P(k)) * R(P(k)>> interesting theoretical question, but is, however, beytred
-C(P(k)) P(k) AT scope of this paper. Even in the absence of a known peri-
_. Q(P(k)), 1) odic solution, one may be able to approximate a switching
sequence with a periodic solution and analyze in advance if
where the short-handP(k) := P(klk — 1) is used; it performs satisfactorily.

C(P(k)) := C(k) and R(P(k)) := R(k) have been _ _ o _

introduced to emphasize their dependencééh) according B- State Estimator with Periodic Sending

to (18), (19), (20); andj(-) denotes the map oP(k) to This section addresses how the communication logic and

P(k+1). estimator blocks of Fig. 1 can be implemented when a

periodic solution for the estimator variance is known. This

implementation is used in the experimental demonstration i
The Kalman filter derived in Sec. 1lI-B can readily beSec. IV.

implemented as a means to manage the communication rateCommunication logicWith a known x-periodic solution

(measured as the number of measurements per time unit) #r the implementation of the sending decision becomes

the problem of Fig. 1. The state estimator block is given byarticularly straight-forward. One simply has to store the

IIl. PERIODIC SOLUTIONS



sending sequencgy;(k)}y for each sensoy over x steps; from the local encoder and IMU and issues commands

that is, defining fork =1, ...k, to the motor. The SBCs exchange data with each other
| i O (G (P) — P)CT > 6P over a Controller Area Network (CAN), whose wires run

~; (k) = A ] through slip rings and along the cube structure. The low-

0 otherwise , level CAN protocols allow each module to broadcast its local

Gaeasurements to all other modules on the network.

) The networked control architecture of the Balancing Cube
transmity; (k) < y;(modk —1,x) +1) =1, (22) s shown in Fig. 4. The modules with local actuation, sensing
which is simply a check of a binary condition. and computation constitute the agents of the NCS (the terms
State estimatoiThe state estimator is given by the Kalmanmoduleandagentare therefore used synonymously below).
filter (10)—(14), which handles the arrival of varying numbe The broadcast protocol ensures that all agents receive_ the
of measurements. In an ideal network, the variance and gaf@me data from the network (if one agent sends data, it is

matrices can be computed off-line. However, in order to copéceived byall other agents).

with non-idealities in physical networks such as imperfect For the purpose of demonstrating the reduced communica-
synchronization and communication delays, the estimatdion state estimation technique, only two sensors are used p
node checks which measurements have arrived at every stepdule: the absolute encoder and the rate gyro measurement
k, builds the output and measurement noise matrices #fat is parallel to the axis of rotation of the cube.

output equation (9), and performs the Kalman filter update A linear discrete-time model of the Balancing Cube with
steps (10)—(14). sampling timeT, = 1/60s is given by

IV. EXPERIMENTAL DEMONSTRATION ON THE
BALANCING CUBE z(k) = Az(k—1) + Bru(k—1) + Bou(k—2) + v(k—1),

We applied the reduced communication state estimator to (23)
a networked control system with unstable dynamics. In thig/(k) = C 2(k) + w(k), (24)
section we present the experimental results, and compare
the closed-loop performance of the reduced communicatiawherew(k) are the velocity commands issued to the motor
estimator to that of the full communication Kalman filter. and originating from a stabilizing feedback controller.eTh

The testbed for the estimation algorithm is the Balancinghodel captures the dynamics of the cube about the equilib-
Cube — a dynamic sculpture that can balance on any of itkim configuration shown in Fig. 2 and 3. The matrices of
edges or corners through the action of six rotating bodiage state space model may be found in [6]; the states and
located on its inner faces, see Fig. 2 and 3. Each rotatin@itputs of the system are summarized in Table I.
body is rigidly mounted to the cube structure and we refer to e special structure of the state update equation (23)
the body together with its housing asrdule Each module \yith the additional delayed input(k — 2) is due to an
is identically equipped with local actuation, sensors, @W approximation of the module velocity states as the preWous
and a computation unit. Sensor data can be shared betwggg),eq velocity commands. This approximation is legitenat
the modules over a broadcast network. Even though the cufge to the high gain inner velocity feedback on the motors,
can balance on its corners (as has been shown in [12]), fghich ensures fast command tracking. It reduces the state
the purpose of this work, it balances on one of its edges. gimension, and hence, the complexity of the state estimatio

The experimental setup is the same as the one presenkﬁgmem_ The Kalman filter equations (3) and (10) are
in [6], and we therefore keep the description of the system iggapted accordingly by adding the extra input.
Sec. IV-A to the essentials. Further details and, in paicu

an explanation of the feedback controller design (a statiic g
LQR controller) may be found in the mentioned reference.
The design of the reduced communication state estimator System

is addressed in Sec. IV-B and experimental results of its

and using Proposition 1, the transmit decision (17) becom

application on the Balancing Cube are shown in Sec. IV-C.

A. System Description and Linear Model ’ A|gorithm‘ ’A|gorithm‘ L. Algorithm
The active building blocks of the Balancing Cube are the 4 4

six rotating modules on its faces. Each one is actuated by v v

a DC motor, which tracks velocity commands by a local Broadcast Network

high gain feedback controller. The angular position of a
module rEIat'\_/e to_the cube bOdy 1S me_asured by_ an QbSO_|L|;tﬁ 4. The networked control architecture testbed: theksdA and S
encoder. An inertial measurement unit (IMU) with tri-axisdenote actuator and sensor units; #igorithm block runs estimation and
accelerometer and tri-axis rate roscope ro) is mablnté&ontrol algorithms as well as the communication logic. An actuand

hf f th b d 9y . pd (gyh ) dul a,sensor unit together with the associated Algorithm blaek @nsidered
On each face of the cube and associated with a module. an agent of the NCS. Solid lines denote continuous andedasfes
single-board computer (SBC) on each module reads dat@&continuous data flow.



TABLE |

60
STATES AND MEASUREMENTS OF THEBALANCING CUBE MODEL.
. . < 40y
state | physical meaning meas.| sensor =
T1 angle module 1 Y1 encoder module 1 & 20
T2 angle module 2 Y2 rate gyro module 1
T3 angle module 3 Y3 encoder module 2 0 J ) )
x4 | angle module 4y, rate gyro module 2 1000 1050 1100 1150 1200 1250 1300
5 angle module 5 ys encoder module 3
6 angle module 6 60
7 cube angle Y11 encoder module 6
g cube ang. vel. Y12 rate gyro module 6 = 40t
=1
20t
B. Design and Implementation of the Reduced Communica- 0

tion State Estimator

We first design the full communication Kalman filter (3)—
(7) for the system (23), (24). We treat the noise variance — 0-85]

1000 1050 1100 1150 1200 1250 1300

matrices as tuning parameters of the estimator. The fatigwi % 0.8
values provide acceptable performance in experiments: =~ 075
: 0.7 ‘ : : : :

@ =diag([1111110.011]) (25) 1000 1050 1100 1150 1200 1250 1300

R=diag([0.110.110.110.110.110.11]). (26) of
The full communication Kalman filter provides an upper —

: 2 4

bound on the achievable performance for the reduced comji-g
munication counterpart; the performance of the two is com- 2

pared in Sec. IV-C. The solution of the DARE (8) for full

communication and the parameters (25) and (28) is

1.

©
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©
—_
©
—_
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©
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[Nl NeNo)

1.09
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0.13 1.17
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0
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=

The only additional tuning parameters required for the

1000 1050 1100 1150 1200 1250 1300
time indexk

Fig. 5.  Simulation result of the reduced communication Kalmaterfil
iteration (21) after 1000 steps. Shown are some diagonal elsnéP (k).
The solution is periodic withk = 50.

The corresponding fixed transmit sequences in (22) are

~i(k) = 150(k), for i =1,3,5,9 (encoder)
for ¢ = 7,11 (encoder)

reduced communication Kalman filter are the threshold pa- 7i(k) = Lz (k), 27)

rameterséd; in (17), which were chosen a8 = 40 for
the absolute encoder measuremerjts=(1,3,...,11), and
d; = 2 for the rate gyro measurements= 2,4,...,12).

In order to extract a periodic solution for the Kalman

filter variance iteration, (21) is simulatéevith initial value

Yi(k) = 15(k) + Lio(k) + - + 1s0(k),
fori=2,4,...,12 (gyro),
for k =1,...,50 and with

0 otherwise .

Il n 1 ifk=k
P(0) = P. From the simulation data (shown for some 15(k) ==

diagonal elements of(k) in Fig. 5), a periodic solution

with x = 50 can be identified. The fixed point iteration Hence, the absolute encoders transmit their measurements

P(k+1) = G°(P(k)) converges to the-periodic solution

1.10 0 0 0 0 0 0 0
0 1.10 0 0 0 0 0 0
0 0 1.10 0 0 0 0 0
P 0 0 0 4.10 0 0 0 —0.01
10 0 0 0 1.10 0 0 0
0 0 0 0 0 4.10 0 0.01
0 0 0 0 0 0 0.75 0.14
0 0 0 —0.01 0 0.01 0.14 1.19

2For easier reading, the elementsifand P (below) are rounded to two
decimal places.

3The files to run the simulation may be requested from the fir$toaudr
downloaded aht t p: // www. i dsc. et hz. ch/ Resear ch_DAndr ea/
Cube/ downl oads.

once every 50 steps and the gyros once every five steps.
The reduced communication state estimator is imple-
mented on each module of the Balancing Cube as described
in Sec. llI-B. Using the decision rule (22), each module
decides at every time step whether or not to transmit a
measurement for its associated sensors. Furthermore, each
module gathers all measuremefjté) that have arrived over
the network, constructs the matrices of the corresponding
output equation (9), and updates its state estimate acgprdi
to (10)—(14).
To keep the exposition of the state estimation method
simple, local sensor measurements are used to update the
estimator subject to the same constraint (22) as is used for



TABLE I

the transmit decision (that is, a local sensor measurersent i
EXPERIMENTAL COMMUNICATION AND PERFORMANCE MEASURES

used to update the estimate if and only if it is transmitted),

even though there is no communication cost involved in | R | P
using the local measurements at every step (this approach full communication Kalman filt_e:# 1.000 ‘ 0.2095
is pursued in [6]). Since, furthermore, the network is a reduced communication Kalman filtef 0.110 | 0.3855

broadcast network, all agents have access to the same sensor
datag (k) and therefore run a copy of the same state estimator
(10)-(14). This also implies that each agent can compu
all agents’ control inputs(k), which makes their exchange
unnecessary.

1,3,...,11) and R;(k) = 0.2 for the rate gyro
measurementsj (= 2,4, ...,12).

Experiment: balancing about an equilibriunThe cube
was balanced in two separate experiments: one using the full
C. Experimental Results communication Kalman filter, the other using the reduced
Rmmunication Kalman filter for control. The experimental

The presented state estimator is used in the feedba ¢ ted bel iqinates f dule 1 (the oth
control system of the Balancing Cube. The control perfor—aa preysen €d below onginates from module (the other
odules’ estimates are essentially the same except fot smal

mance and communication rates of the reduced communj-=". " ) . .

cation estimator are compared in experiments to those Fwa_mons caused by imperfections of the physical commu-

the full communication estimator: their state estimates almc_l‘?lkt]'on E?t\_Nordk sucfh as degys).d total icati

used as input to the same state feedback controller. Thet 7%? ained per ?rrlnanc a;nz o_atcommunlr?a 'on

control objective is the stabilization of the system abdwt t rate or experimental runs o MINUtes are snown in

equilibrium (k) = 0. TabIeIII. As expected, reducing the number of measurements
In order to evaluate the experimental control pen‘ormancg,egat'vely affects the control performance. However, the

we use a truth model that is based on the nonlinear st grformance decrease is less than a factor of 2, while only

0
estimation method for the Balancing Cube presented in [1 % of the total measurement data was used.

and augmented with further non-causal post-processing. Fo For a 30-second sequence, module 1's estimates of is

this purpose, all sensor data (including, in particula th_own_angle, module angle 4, and both cube states are shown
purp ( d P 5 Fig. 6 together with the reference staté'"(k). The

accelerometer data) is recorded and the truth model stdte ) L N R
2"™"(k) is obtained in post-processing. The estimate of thg0rresponding estimation error is given in Fig. 7.
cube tilt obtained from this method has been verified with a
camera-based motion capture system (cf. results in [12]) an
has proven to work well on the cube. The approach for reducing communication requirements
The same measures for control performance and commi@’ state estimation in a networked control system presente
nication rate are used as in [6]. The performafitef the herein follows the same basic idea as the approach in [6]:
control system is measured as the root mean square (RM@&)Sensor measurement is employed for updating a state

V. CONCLUDING REMARKS

value of the system state, estimate (and hence transmitted from sensor to estimator)
if it is required to meet a certain estimator performance —
1 & or, loosely speaking, if the measurement cannot be preflicte
P = o Z(E"U‘h(k))TE””‘h(kL well enough by the state estimator. Unlike [6], however, the

k=1 sensor transmission decision used in this paper is not based

on the real time measurement, but on its prediction variance
This has the benefit that, just as for the standard Kalman fil-
?er, the variance evolution can be computed and analyzed off
line. The adaptation of the communication requirements to
unmodeled, real time events such as external disturbasces i

for data of lengthi’ and wherez™"(k) is the full state vec-
tor that also includes the angular velocities of the module
The communication ratéR ; (k) of sensorj is defined as the
moving average of transmissions over the l&5tsteps; that

'S, however, not possible. A promising approach is to combine
Ri(k) = number ofy; (k) transmits in[k— M +1, k] the two approaches by augmenting fixed minimum sensor
I M ' communication rates with bounds on real time prediction
Furthermore, théotal communication rateR is defined as  €10rs- _ o
A periodic solution to the reduced communication Kalman
1 a 1 & i filter corresponds to periodic sensor transmission rates,
R = ;;Z EZR’L’( )] which gives rise to a very efficient implementation of the
=1 k=1

sensor’'s communication logic. The resulting state estimat
The communication rate® ;(k) and R are in the interval is a periodic Kalman filter with possibly different sensor
[0,1] by definition. In particular;R = 1 corresponds to the arrival rates. This method can therefore also be used as a
case where at each time step all data is exchanged betwekssign tool for a multi-rate Kalman filter, where the reqdire
the agents, whiléR = 0 means no data is exchanged. Foisensor update rates are determined from tolerable bounds
M > k the rates of the reduced communication Kalman filteon the estimation error variance selected by the designer.
are constantR;(k) = 0.02 for the encoder measurementsThe question of the existence of a periodic solution and cor-
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Fig. 6. State estimates(k|k) (blue) compared to the truth model state Fig. 7. Estimation errorg(k) = z™"(k) — z(k|k) for the data shown
z"MN(k) (red). From top to bottom: angle of module 1, angle of module 4in Fig. 6. From top to bottom: angle of module 1, angle of moduleuhe

cube angle, and cube angular velocity.

angle, and cube angular velocity.

responding analysis of the reduced communication Kalmaif8] Y. Xu and J. Hespanha, “Optimal communication logics in reked

filter iteration (21) are interesting theoretical problefos
future study.

adaptation) when it is not in use for state estimation.
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