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Abstract—An event-based state estimation scenario is consid- Process
ered where multiple distributed sensors sporadically transmit (k)
observations of a linear process to a time-varying Kalman filter
via a common bus. The triggering decision is based on the y1(k) ym (k)
estimation variance: each sensor runs a copy of the Kalman Sensorl v Sensor M v
filter and transmits its measurement only if the associated ) -
measurement prediction variance exceeds a tolerable threshold. Trangmlt Trangmlt H E
The resulting variance iteration is a new type of Riccati equation, Logic Logic

Estimator
@(k), P(k)
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with switching between modes that correspond to the available P(k)
measurements and depend on the variance at the previous Estimator
step. Convergence of the switching Riccati equation to periodic z(k), P(k)
solutions is observed in simulations, and proven for the case )

of an unstable scalar system (under certain assumptions). The f
proposed method can be implemented in two different ways: as

an event-based scheme where transmit decisions are made on Common Bus
line, or as a time-based periodic transmit schedule if a periodic !
solution to the switching Riccati equation is found. v
Estimator
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Index Terms—Event-based state estimation, distributed esti-
mation, sensor scheduling, networked control systems, switchin
Riccati equation, periodic solution.

Fig. 1. Distributed event-based state estimation problene. Sthtex (k) of
a linear process is observed By sensor agents, which sporadically transmit
|. INTRODUCTION their measurementsg; (k) over a common bus. (Solid lines denote continuous

Novel control strategies and improvements in sensor acfﬁ\_/v of data, dashed lines indicate event-based communigadiwh commu-
’ nication is assumed without delay and data loss.) Estimatdesrconnected

ator and network teCthIOgy VYi” allow the next generatiofb the bus receive the measurements and keep track of the icoatlistate
of control systems to tightly integrate the physical worleheanz(k) and varianceP (k). Each sensor makes the decision whether to

with computation and communication. Referred to as Cybéfa_msmit its local measurement based on the estimation variRigg, thus

. . . inking the transmit decision to the estimation performandee §ray blocks
physmal systems (CPSs) [1], these highly integrated Byste onstitute the event-based state estimator to be desigmeihighe depicted
will extend present-day networked systems (such as neaslorkcheme can be applied in different scenarios where commuariciticostly.

control systems (NCSs) [2] and wireless sensor networlsa monitoring application, a remote estimator centrally $usk sensor data
received from the bus (as shown here). In a networked cosysiem, where

(WSNs) [3]) in both Si_ZG and CompleXity-_ ) ) the agents are also equipped with actuation, the state ¢siman be used
As the number of interconnected entities in future CP$sally for feedback control.

increases, the cost of communication will become a sigmifica

factor. Communication is costly even in today's networked

systems. In NCSs, where a multi-purpose communicati@xample, to consider the communication network as a shared
network is shared by many different control, sensor amdsource, and to design the control and estimation algosith
actuator units, a sensor node cannot transmit its measuateme tandem with the network access strategy.

without preventing other units from using the network or This article considers the problem of estimating the state
causing load-induced delays. In WSNs, the transmission &f a dynamic system from multiple distributed sensors in a
a sensor measurement to a remote estimator consumes engg@yiario where the communication of sensor measurements is
that is often a significant fraction of the system’s overat®y costly. We propose a method where data is transmitted only
balance. when certain events indicate that the data is required td mee
While the future of CPSs in areas such as transportatigibnstraints on the estimator performance (expressed ersiol
power systems, smart buildings, mobile robots and procesis bounds on the error variance). Thus the transmit decisio

plants is promising, the cost of communication must bg linked to its contribution to the estimator performancel a
managed if CPSs are to meet their potential. It will be vial, data is exchanged only when needed.
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agent implements a state estimator that is connected to th&Ve first mentioned the idea of event-based state estimation
common bus. Since the state estimate is computed basedaith variance-based triggering in the conference paper [6]
data received over the bus only (the local sensor data is usdtere we applied the method on the NCS of the Balancing
only when also broadcast) and since we assume a loss &ube [7]. By using the event-based estimator for feedback
delay-free network, the estimates are the same on all agerdstrol, we achieved a significant reduction in average com-
and represent the common information in the network. Theunication at only a mild decrease in control performance.
estimator can hence be used to make the transmit decisibhe experimental results from [6] are not repeated herein.
if the other agents’ estimate of a particular measurementTikis article includes the proofs for the convergence result
already “good enough,” it is not necessary to communicatiee scalar switching Riccati equation, which were omitted i
this measurement; if the common estimate is poor, on the otlaepreliminary version of the result in [8].

hand, the measurement is transmitted so that all agentspean u This article continues as follows: After a review of related
date their estimates. The estimators are implemented @&s tinwork and introduction of notation in the next subsections,
varying Kalman filters, which compute the mean and variantiee event-based state estimator and its correspondingtRicc
of the state conditioned on the received measurements. equation are derived in Sec. Il. In Sec. lll, we illustrate th

Different decision rules for determining whether an estamaperiodic behavior of the switching Riccati equation throug
is “good enough” are conceivable. In [4], [5], for example, aimulation examples of a scalar and a multivariable process
constant threshold logic on the difference between theahctThe convergence result for the scalar case is derived in'8gec.
measurement and its prediction is used. Herein, we conaideand we conclude with a discussion of the results in Sec. V.
different approach where the decision is based on the \@ian
a measurement is broadcast if its prediction variance ebsce
a tolerable bound, which indicates that the uncertaintynNh%' Related Work
predicting the measurement is too large. If a transmissson i Event-based strategies are a popular means of ensuring
triggered by a condition on the estimation variance, werrefefficient use of the communication resource in NCSs or CPSs
to this asvariance-based triggering (see [9] and references therein). As opposed to traditional

As opposed to making the transmit decision based on retine-triggered transmission of data, event-based aphesac
time measurement data (where, for a stochastic process, tia@smit data only when required to meet a certain specifica-
transmit decision is a random variable), the approach herdion of the control system (e.g. closed-loop stability, ttohor
permits an off-line analysis of the (deterministic) estiima estimator performance). Event-based state estimatidigns
variance iteration, provided that the observed processais gvith a single sensor and a single estimator node have been
tionary and its statistics are known in advance. Specificalstudied in [9]-[16], for example. Event-based state edtona
if a periodic solution of the variance iteration is found, iproblems for distributed or multi-agent systems have been
corresponds to a periodic sending sequence for each senls@ked at in [4], [5], [17].
and hence allows for a straightforward implementation ef th The basic idea of implementing state estimators on the
resulting communication logic. The periodic sending segae agents of an NCS in order to reduce communication of sensor
can be computed in advance and fixed for each sensor. Sdalte. was first presented in [18]. Therein, each agent uses a
a time-based implementation represents an alternativeeto model to predict the other agents’ measurements at times whe
event-based implementation shown in Fig. 1 where transrtfiese are not transmitted (because the prediction errelasvb
decision are made on-line. The proposed method can heac¢hreshold), and the agentsetsparts of the state vector
also be used as a tool for off-line design of periodic sensathen new measurement data becomes available. In contrast,
schedules. The recursive equation for the estimator vegiarthe Kalman filters used hereifuse model-based predictions
is a switching equation that represents a new type of Riccuatith the received measurements. Communication scherrees lik
equation. A focus of this article is on studying the convamge these where, in order to reduce network traffic, sensor data i
of this equation for the special case of a scalar unstabtersys not sent at every time step, are also referred teadrolled
communication[2], [13], [19].

In most of the above-mentioned references for the single
sensor/single estimator case, the sensor node transnaitsla |
The main contributions of this article are the following: = state estimate (obtained from a Kalman filter on the sensor)
« Variance-based triggering (combined with a Kalman filto the remote estimator, rather than the raw measurement.

ter) is proposed as a novel framework for event-bas#tlhile this seems to be the method of choice for the sin-

state estimation. gle sensor agent case (the local state estimate contains the
« A new type of switching Riccati equation is obtained afised information of all past measurements), communigatin
the variance iteration for this event-based estimator. raw measurements has a practical advantage for the case of
o The convergence properties of the switching Riccati equarultiple agents with coupled dynamics. For an agent to fuse
tion are studied for an unstable scalar process, andamother agent's measurement with its local state estinitate,
sufficiency result for asymptotic periodicity is derivednust know the variance of the measurement conditioned on

(Theorem 2): if two assumptions are satisfied, glob#he state. This is usually known in form of a sensor model.

convergence of the Riccati equation to a periodic solutiofo optimally fuse another agent’s state estimate (with tlip

is guaranteed. dynamics), on the other hand, the variance associated with

A. Contributions and Outline



the estimate would have to be known. Since this variance ¥griance is thus captured by the discrete-time periodic&ic
however, only known to the agent that generated the estimatquation, [25]. Note that the problem considered herein is
it would have to be communicated over the network as wetljfferent in that we do not a priori assume a periodic tramsmi
hence, increasing the network load. The method herein malkesjuence, but we show that a periodic sequence results from
no assumptions on the dynamic coupling between the systdére event-based estimation problem. In Kalman filteringhwit
parts that are observed by the various sensors. intermittent observations [26], measurement arrival atfilter

In the above-mentioned references on event-based estisasubject to random data loss modeled as a Bernoulli process
tion, an event is triggered by some condition on real-tima daand the filter variance becomes a random variable itself. In
(measurement or state); that is, in a stochastic framewdatle, contrast to being governed by an external (random) process,
transmission is a random event. In contrast, the variaased measurement transmissions herein are triggered “infgfnal
trigger used herein depends on the prediction varianceeat thy the estimator whenever new data is needed.
previous step. The resulting variance iteration is deteistic Event-based state estimation is closely related to event-
and depends on the problem data only. A condition on tlased control. In fact, an event-based controller is obthin
variance to trigger sensor transmissions is considere@0h [ when the output of an event-based estimator is connected to
in a slightly different framework. Therein, the authors €oma state-feedback controller (as is done in the experimental
sider two heterogeneous sensors: a condition on the estimatpplications in [4]-[6]). Results in [27] and [28] suggelsist
variance is used to decide which of the sensors will transnsiructure for event-based control. Therein, the authooseor
its measurement to a remote estimator at any given time stémat the combination of an optimal state-feedback comroll
Whereas the average communication rate is constant in [2@esigned using standard methods) with an optimal event-
we seek to reduce the average sensor transmission rate, laagbd state estimator (from a joint design of estimator and
to have the option to not transmit any data at a time stepansmission logic) yields the optimal event-based cdietro
The authors in [20] also observe convergence of the estimaffor linear systems with a centralized controller and a qatcl
variance to periodic sequences in their scenario, but tley fhite-horizon cost).
not prove this convergence.

As mentic_med previously, the even_t-baseq estimati(a Notation and Preliminaries
method herein can also be used for off-line design of sensor )
schedules (when a periodic solution to the Riccati equation'Ve UseR, Z, N, andN* to denote real numbers, integers,
is implemented as a time-based schedule). Related serfi@jinegative integers, and positive integers, respeytivy
scheduling problems are discussed in [21], [22], and, moFe:|-] and Var[|-], we denote the conditional expected value
recently, [23]. Meier et al. [21] and Kushner [22] address %nq the coqd|t|onal variance. A normally d|§trlputed ramdo
finite horizon optimal scheduling problem, whene sensor variable z with meanm and covariance matri¥ is denoted
observations are to be scheduled over a finite horizanm Y 2 ~ N(m, V). ] .
to minimize some cost function. They show that the optimal FOr i, € Z and N € N*, we define the binary operator
schedule can be determined off-line (as is the case hereimy’ as follows:
and Kushner finds _that the_z qbservation ins_tants Fend to . ‘ {mod(i—j,N) if mod(i—j, N) > 0
be equally spaced (i.e. “periodic” over the finite horizoa) f i—NJ= ) o 1)
unstable scalar systems and a large time horiZoZhang et N if mod(i—j, N) =0,

al. [23] considered an infinite horizon optimal schedulingtp  \yhere mod(i, N) € {0,...,N —1} is the (nonnegative)
lem, for which they established that the Optlmal SensordS‘Cthmainder ofi divided byN Hence, “y’ is the subtraction

ule can be approximated arbitrarily well by a periodic ongyith subsequent modulé/ operation, except that a resulting
In contrast to the aforementioned works, we do not cast thqs replaced by .

reduced communication estimation problem as an optinizati For 3 symmetric matrixt € R"*", we write X > 0 and

problem. Instead of fixing the number of transmissions aprio x > () to mean thatX is positive definite and positive semi-
we start from specifications of the desired estimation tyaligefinite, respectively. For a matrid € R™*", Aj, denotes
(expressed as bounds on the measurement prediction \@¥iagge jth row, and [A;.]5es with J C {1,...,m} denotes the
and use event-triggers to dett_arm_ine whether a transmissi@gtrix constructed from stacking the rowss. for all j € J.
needs to happen or communication can be saved. Notalplyyther, dia@d;;],c, denotes the diagonal matrix with entries
periodic schedules appear herein, as well as in [20], [2;1,jj, j € J, on its diagonal.

[23], as limiting cases or suboptimal solutions despitéeddint  "\we define the binary indicator functidhy such thatl y =

underlying problem formulations. ~1if statementX is true, andl x = 0 otherwise.
The Riccati iteration obtained for the event-based estimat  cgnsider the iteration

problem herein is related to Riccati equations of other well

known Kalman filtering problems with different sensor trans p(k+1) = h(p(k)), p(0)=po >0, @)
mission ppI|C|es. For full communication (all sensors gt with a function : D — R*, D C R™. For  being applied
at every time step), the discrete-time Riccati equationtlier m times. we writeh™: that is. form € N

standard Kalman filtering problem is recovered, [24]. When ' ' ' '
periodic transmission schedules are fixed a priori, thelprob p(k4+m) = h™(p(k)) = h(h(...(h(p(k))...))), (3)
can be cast as a linear periodic system, and the estimation —

m



whereh®(p(k)) := p(k). For the domain of a functioh, we

A. Full Communication Kalman Filter

write donm(h). We use the following definitions to characterize |; is well known that the Kalman filter is the optimal

periodic solutions of (2):

Definition 1 (adapted from [29])Let p* € dom(h). Then
p* is called an/N-periodic pointof (2) if it is a fixed point of
RN, that is, if

WY (p*) = p*. @)
The periodic orbit ofp*, {p*, h(p*), h2(p*),..., AN "1(p*)},
is called anN-cyclg and N is called theperiod

Bayesian state estimator for the process (7), (8) because it
keeps track of the Gaussian conditional probability disttion

of the stater(k) conditioned on all measurements up to time
k, Y(k) :={y(1),...,y(k)} (see [24], for example). To dis-
tinguish this Kalman filter from the event-based filter dedv
below, we refer to it as th&ll communication Kalman filter
Under the above assumptions, the state prediction variance

Var [z(k)|Y(k—1)] converges taP > 0, which is the unique
positive semidefinite solution to the discrete algebraiccRii
equation (DARE):

P=APA" +Q — APCT(CPC" + R)"'CPA".
We write P = DARE(A, C, Q, R).

Definition 2: A solution to (2) is calledasymptotically/N-
periodic for the initial conditionp(0) = py if
M (5)

lim ™% (po) = p*,
m—r o0

9)
wherep* is an N-periodic point of (2).

For a functionh and collections of interval€; andZ,, we
write Z; i> 7, to indicate that each interval from;, when

mapped byh, is contained in an interval iff,; that is, B. Event-Based Kalman Filter

Denote byJ(k) C {1,..., M} the subset of sensors that
transmit their measurement at tinke We make precise how
we chooseJ (k) later in this section. Since communication is
assumed to be instantaneous and without data 166s) is
also the set of measurements available at the estimatonat ti
2(k) = Az(k—1) +v(k—1) (7) k- The corresponding measurement equation is then given by

y(k) = C (k) +w(k), 8) j(k) = C (k) x(k) + w(k), (10)

wherek is the discrete time indexy(k) € R" is the state, wherej(k) = [y;(k)];esx) is the vector of those measure-
y(k) € RM its observation ¥/ the number of sensors),ments available at timé, @(k) ~ A(0, R(k)), and output
and all matrices are of corresponding dimensions. The prgnd measurement noise variance matrices are constructed as
cess noise, the measurement noise, and the initial state . . )

are assumed mutually independent, normally distributeth wi Ck) = [Ciljesw), R(k) = diagRjj]je (k) (11)

’U(k‘) ~ N(O,Q), w(k) ~ N(O,R), .%'(O) ~ ./\/'(J,‘o,PO'), Notice thatgj(k:) c Rm(k)’ ’II)(]C) c Rm(k), é(k) c Rm(k)xn,

Q >0, R >0 andF > 0. We assume thafA,C) is  gnq R(k) € Rm(k)xm(k) have time varying dimensions with
detectable (i.e. the process is detectable when measmsammk) < M. This includes the case (k) = 0; that is, at time

from all sensors are combined, but not necessarily from anpere is no measurement available at the estimator. In order
individual sensor)(4, Q) is stabilizable, and? is diagonal. 5 ayqid special treatment of this case, we use the conventio

The latter assumption means that the measurement NOIS@,i% the measurement update step in the Kalman filter below
mutually independent for any two sensors considered, whighgmitted in casen(k) = 0.

is often the case in practice. The presented state estimatior, any given sequence @f(k) and R(k), the distribu-
method can, however, be readily extended to the case of blogkt, ¢ the statez(k) conditioned on the set of available
diagonal R by sending blocks of correlated measurements ﬁ{easurements?(k) — {j(1) | 0 < I < k} is Gaussian

once. . . [24]. The Kalman filter keeps track of the conditional means
Remark 1:For ease of notation, we consider an unforceg, | variancesi(klk — 1) = Ele(k)|Y(k —1)], #(k|k) =

system; that is, no mpul(k—l) in (7) Provided the inputs E ]‘(k)|5}(k)], P(k|k‘—1) _ Var[x(k)|)7(k—1)], andp(k|kj) _
are known by all sensor agents at all times (such as whgﬁr [z(k)|Y(k)]. The filter equations are

they represent a known reference signal or when they are

LT, o VLhel,dLel,: W) C L. (6)

[I. EVENT-BASED STATE ESTIMATOR
We consider the stochastic linear time-invariant system

shared over the network), the extension of the event-basedi(k|k—1) = Az(k—1|k—1) (12)
state estimator to this case is straightforward, and theysisa  p(k|k—1) = AP(k—1|k—1)AT + Q (13)
of the estimator variance in the following remains unchahnge K(k) =

We seek an algorithm to recursively compute an estimate of
the statex(k) from measurements received up to tifeand
the problem parameters given b\, C, Q, R, P,). If the full
measurement vectgr(k) is available at timek, the problem is (15)
solved by the standard Kalman filter (Sec. 1I-A). In Sec. JI-B (16)
we present the event-based state estimator, which consists
of a Kalman filter that uses a reduced set of measuremefits filter is initialized withz(0|0) = 2, and P(0]0) = P,.
as an input and a rule for deciding whether to transmit a For notational convenience, we uggk) := P(k|k—1) for
measurement. the state prediction variance. The prediction varianceucap

C(k)P(k|k=1)CT(k) + R(K)) ™" (14)
C

P(k|k—1) CT(k)
- ( (
@ (k|k—1) + K (k) (§(k)—C (k) (k|k—1))

#(k|k)

P(klk) = (I-K(k)C(k)) P(k|k—1).



the uncertainty about(k) given all measurements up to thanstant, so that all estimators can use the updated variance
previous time stepk — 1. Similarly, Var[y;(k)|Y(k—1)] = from thereon for making predictions.
CjP(k)CJT + R;; captures the uncertainty in predicting the Remark 3:The triggering rule (17) uses constant rather than
measuremeny; (k). A measuremeny; (k) is transmitted and time-varying thresholds;. This is partly motivated by prac-
used to update the estimator if, and only if, its predictiotical considerations (constant thresholds are easier fdein
variance exceeds a tolerable bound. Since the event-basezht), and also suggested by theoretical results on thmapti
Kalman filter cannot do better than the full communicatiodesign of communication logics for related problems suah as
filter, we use a threshold on the difference Valy(k)|Y(k— [9], [19]. Therein, optimal event-triggering rules are igeed
1)] —limy_, o Var[y(k)|Y(k—1)] = C;(P(k) — P)C] for the such that a cost function, which captures estimation orrobnt
transmit decision. Hence, we use the transmit rule performance, is minimized. Typically, the optimal trigopey
. _ rules are time-varying for finite horizon problems, while
transmity; (k) < C; (P(k) n P)CJT > 9; a7 they are constant for infinite horizon problems, [9, p. 340].
for sensorj, where the design parametéy captures the Since we are mostly interested in long-term behavior (gera
tolerable deviation of theth sensor measurement predictio§ommunication rates and long-term estimation performgnce
variance from the full communication, steady-state vaman and the system (7), (8) is time invariant, there is esséytial

For ease of notation, we introduce the transmit function N0 need to vary the threshold. For other applications, where
conditions such as communication loads or plant parameters

(k) = 1c;(p(k)-P)cT>s6; (18) change, adaptive thresholds may be preferable.

Having established the transmit rule (17), we can now make - _ _ _
the setJ (k) of all sensor measurements transmitted at timeC. Switching Riccati Equation

precise: The update equation for the estimator prediction variance
Jk)=1{j|1<j <M, C;(Pk)— P)CJ-T >6,). (19) P(k) is obtained by combining (11), (13), (14), (16), and (19):

T T,

The matricesC'(k) and R(k) for k € N are well defined by Ple+1) = A{D(k) A+e B AP(F)C (VP(k))
(11), (19), and knowledge aP (k) = P(k|k—1). - (C(P(k)) P(k) CT(P(k)) + R(P(k)))

The index set/(k) can have up tal/ elements; that is, -C(P(k)) P(k) AT =: H(P(k)), (21)
more than one sensor may transmit their data at tkmén 5 . 5 -
practice, this can for example be handled by low-level netwowhere C(P(k)) := C(k) and R(P(k)) := R(k) have been
protocols assigning priorities to the different sensossisghe introduced to emphasize their dependencerti) by (11)
case in the application in [6]. We assume that the netwofidd (19); andH (-) denotes the map fronf(k) to P(k+1).
bandwidth is sufficient for all selected sensors to transmif'€ System given by (7), (10), and (11) can be regarded as a
their data within on time interval. As we shall discuss igWitching system with modes given by the possible values of
the next subsection, the transmit sequence (and hence &) The modes of the system are switched as a function of
maximum number of sensors transmitting simultaneously) cie prediction variance at the previous step through (19sT
be analyzed in advance. (21) is a Riccati-type iteration with switching that depsrah

The Kalman filter (12)—(16) together with the variancethe variance at the previous step.
based transmit decision (17) is referred to as #went-  According to (21), the sequende(k) for k € N* can be
based state estimator with variance-based triggeriSince computed from the problem datal(C, Q, R, ), and the
the Kalman filter (12)—(16) is the optimal Bayesian statining parameter§;. Notice that this is fundamentally differ-
estimator for any sequencéqk) and R(k), it is also optimal €Nt from approaches such as [4], where the decision whether
for those sequences given by (11) and (19). In other word8, transmit a measurement is based on the actual real-time
given the rule (17) (which captures the objective to ud@easurement. Since the measurement is a random variable,
relevant measurements only), the filter (12)—(16) is thenegdt the Kalman filter variables>(k) and P(k|k) become random
state estimator for the estimation problem given by (7)) (10variables themselves; whereas here, they are determiaisti -
(11), and (19). Clearly, ifJ; = 0 for all sensors, the full can be computed off-line from the problem data. This will
communication Kalman filter is recovered. allow the analysis of the switching Riccati equation (21) in

Remark 2:Alternative triggering rules than (17) may bethe following sections. Of course, the off-line analysiidy
useful for different scenarios. For example, when sensizenoP0ssible if the problem data is known ahead of time (it is not,
is not stationary (i.e. Vdw; (k)] = R;;(k) instead ofR;;), for example, in the scenario discussed in Remark 2).
the modified triggering rule

-1

Ill. | LLUSTRATIVE EXAMPLES

We provide two examples to illustrate the behavior of
can be useful for adapting the sensor transmit rates tongrythe switching Riccati equation (21) for the event-basetkesta
R;;(k). For instance, if sensgr observes a change in sensoestimator. The solutions are asymptotically periodic ithtex-
conditions leading to an updatdgl;;(k), it can take this into amples. Periodic solutions of the Riccati iteration cquoesl
account in the transmit decision (20). The updafeg (k) to periodic transmit sequences, which gives rise to a time-
can be communicated alongsige(k) at the next triggering triggered implementation of the event-based design with lo

transmityj(k:) 54 CJP(]C)C;- + Rjj(k) > (Sj (20)



complexity (the sensor nodes do not need to run a copy of  ;;4f
the estimator then). Matlab files to reproduce the simutatio
results of this section are provided as supplementary mater < 426
with this article.

2.26
A. Scalar Problem = i [ ! [ : [ : [ [
Consider the system (7), (8) with a single sensur £ 1), <0 : : : :
a scalar processi(= 1), and the parameters (small letters are 0 3 6 9 12 15
used to indicate scalar quantities): Iteration &
Example lia =12, c=q=r=1,6 =3, po = p- (@é=3
Figure 2(a) shows the results from simulating (21).
As expected, the prediction variang€k) grows at times 4.09¢
where no measurement is available. Once the threshold is—
exceeded, a measurement is transmittegk = 1) and the =
estimator variance drops. The solution in Fig. 2(a) asytpto 1.98

ically converges to a periodic solution with peridd = 3.
Figures 2(b) and 2(c) illustrate that, for different valwds =
0 (all other parameters are the same as in Example 1), asymp- < ¢

1,

totically periodic solutions with very different periodarc be 0
obtained. Notice that the period does not vary monotonicall Iteration k
with 4. (b) 5§ =0.2
17.66f ‘ ‘ ‘
B. Multivariate Problem of the Balancing Cube ‘ ‘ ‘ ‘ ‘
The event-based state estimation method was used in [6] to§11'57_ : T
7.34f

reduce the average communication in the networked control ol
system of the Balancing Cube [7]. As an example for the 2.36 ‘ ‘ ‘ ‘ 1
multivariate version of (21), we recapitulate the simwati . 1» { I T [ [ I T [ [ ( T ( ( [ ( ( [ [ {

results which were used in [6] to find periodic transmit §
sequences. Please refer to [7] for a detailed description of
the system and to [6] for details on the model and the design
of the event-based state estimator.

The model that is used for state estimation has= 8
states. Noisy measurements of the states..,xzg andzg Fig. 2. Simulation results for the scalar Example 1 and diffevalues of the

are available. The result of simulating the switching Riccathreshold parametet. The top graph of each sub-figure shows the variance
iteratesp(k) (dots) and the transmit threshgld-§/c? (dashed). The bottom

equation (21) for this system is ShOV\{ﬂ in Fig. 3 (for iterafio g apn shows the corresponding transmit sequep@e. All solutions are
1000 to 1150). The obtained solution converges toNan asymptotically periodic with periodd’ = 3, 5,19 from (a) to (c).

cycle with period N = 50. Corresponding to this solution,

the sensor measuring; transmits every 50th time step (the

same holds for the sensors measuring ...,z whose The question, under what conditions is the periodic trans-
variance is not shown in Fig. 3), and the measurement Bfssion of sensor data the optimal solution for the eveseta
zs is transmitted every 5th time step. This corresponds to€gtimation problem posed by (7), (10), (11), and (19), is of
substantial reduction in average communication compavedtpeoretical interest for understanding the connectionveen
the full communication Kalman filter. As is shown in [6], thistime-triggered and event-based estimation. On the othed,ha
reduction in communication comes at only a mild decrease ¢Reckable conditions for asymptotic periodicity are aldo o

control performance when the estimate is used for feedba@actical value as they provide a means of identifying mbcio
control. solutions other than by simulating (21) and having to intetrp

the result (where it may happen that one has not simulated
long enough to find a solution with a larger period).

- ] ] ] The subject of study in this section is the scalar version of
For the specific problems in the previous section, we o 1); that is, the nonlinear recursive equation

served in simulations that the Riccati iteration (21) appgtes
periodic solutions (i.e. convergence to periodic solutiovas I L a® c? p? (k)
interpreted from simulation results rather than provem}his (k1) = a”p(k) + ¢ = L) -p)zs 2

38 57 76 95
Iteration k
(c) 6 =9.6167

o
L
©

IV. ASYMPTOTIC PERIODICITY FOR SCALAR PROBLEM

i+ @
section, we address the convergence problem and derive athe ) = p, > 0, (23)
orem for the scalar version of (21) that guarantees asyiaptot
periodicity of the solution under certain assumptions to der the parameter§a|] > 1, ¢ # 0, ¢ > 0, r > 0,
derived in this section as well. 0 > 0 (small letters are used to indicate scalar quantities). We



50F — = = — = e —— T ————
. 40t 1
£ 30
20 1 .
10 A %
0 ; ; R
1000 1050 1100 1150 )
<
0.4f
= 0.3t
~ 0.2 .
o 0
0.1 1 0 P p+4 P2
0 p
1000 1050 1100 1150
Fig. 4. The functionsh (black) andg (gray). The filled circle indicates
0.85¢ a closed interval boundary, whereas the unfilled circle caidis an open
g interval boundary. The dotted diagonal represents thetitgemap p = p.
- 08 The intersection of; with the identity diagonal represents the solutjro
& the DARE (9). The dashed box represents theisetp2), which is invariant
0.75 : : 1 underh. Forp > p+ 6, h(p) = g(p).
1000 1050 1100 1150
6 with h defined by
5F] 7t fr |
- ‘31 h : [0,00) — [0, 00)
g ] 2 2.2 (26)
21 1 2 a~c'p
= a"p+1—1,5516 5——
1 ‘ ‘ i p p p>p+d Zp+1
1000 1050 1100 1150

with parametersla] > 1, ¢ # 0, 6 > 0; and withp =
DARE(a, ¢, 1,1). The graph ofh is shown in Fig. 4 together
Fig. 3. Simulation results of the switching Riccati equati@1) for the with the graph of the functiom,

Balancing Cube model after 1000 steps. Shown are some elenfeR&:0

(dots) and the transmit threshol};; + &; (dashed). Notice that there is g : [0, 00) — [0) 00)

no explicit threshold onP;2 (k) and P77 (k). The solution is asymptotically
periodic with periodN = 50.

Iteration k

a2 &2 p 27)
Ap+1’

i ) . which represents the variance iteration of the full communi
study the scalar problem (22) since it represents the sstple,ion Kalman filter.

version of the matrix equation (21) that still exhibits itsim We summarize some properties lof which will be useful

characteristic, namely switching due to the variance®asgyer The proof is straightforward and therefore omitted.

trigger. Furthermore, we restrict attention to unstableashgics Proposition 1:Let p; := h(p+ ) andps := a®(5+6) + 1.

(la] > 1); in this case, communication of measurements ig,q following properties of hold:

required for the estimation error variance to be bounded. We,. : . : . : _

derive conditions that guarantee the solution of (22) to be(') ans[;in;n;u?us and strictly increasing @n, p-+4) and

asymptoticallyN-periodic, and give an algorithm to compute .. 2l _ _

the periodN. After some preliminaries in Sec. IV-A, we use (i) Z IS Q|ffert§nt|able onlpy, p + 0) and on(p + 4, pa).

an illustrative example in Sec. IV-B to outline the converge ((IiI\I/)) h('[s 'nje(;)'\f [on[]}o;(pz);.u h(pr),pa) C | )

proof, which then follows in Sec. IV-C to IV-F with the main o pl’gQ _le’ 1\1;2 o P1),p2) = P1,P2)-

result being stated in Sec. IV-F (Theorem 2). (v) ¥p € [0,00),3m € o (p) € [p1,p2)- _

Forh([p1,p2)) C [p1,p2) in (iv), we also say thdp, p2) is an

invariant set undeh. From (iv) and (v), ultimate boundedness

of the solution to (25) (in the sense of [30]) is immediate:
Corollary 1: For any initial conditionpy > 0, the solution

Sinceq > 0 andr > 0, (22) can equivalently be written ast0 (25) is ultimately bounded from above and below; that is,
there existsn € N such thatp; < p(k) < po for all &k > m,

p— a’p+1-—

A. Preliminaries

(k+1) (k) a2 €4 (Mf with p; andp-, as defined in Proposition 1.
b =q22 +1-10_ 555 - ) 17 (24) Corollary 1 shows the effect of the threshold parameter
q q il § on the estimation quality; in particular, the upper bound

po := a®(p+09)+1 can directly be adjusted via this parameter.
By redefiningp(k), ¢?, andd asp(k)/q, ¢*q/r, andd/(c*q), Furthermore, the corollary allows us to restrict attentton
respectively, we can assume without loss of generality thtéale interval [p;, po) for studying conditions for asymptotic
g = r = 1. Henceforth, we study the iteration periodicity in the following.
From (iii), the inverse ofh exists on the range of on

p(k+1) = h(p(k)), p(0)=po >0, (25) [p1,p2), which is h([p1,p2)) = [p1,h(p2)) U [h(p1),p2) by



(iv). Hence, we define the inverde ! as

h= i [p1, h(p2)) U [h(p1), p2) = [p1,p2)

y + h™'(y) such thath(h "' (y)) (28)

:y.

The convergence proof in the following subsections is based

on thecontraction mapping theorem

Theorem 1 (Contraction Mapping Theorem, [31Det ||-||
be a norm forR™ and S a closed subset dR™. Assumef :
S — S is a contraction mapping: there isdn 0 < L < 1,
such that||f(p) — f(®)|| < L||p — p|| for all p,p in S. Then
f has a unique fixed point* in S. Furthermore, ifp(0) € S
and we sep(k+1) = f(p(k)), then

k

(k) — "]l < =2 llp(1) ~ p(O)]| (k> 0).

Equation (29) implies thap(k) converges tw* ask — oo
for any p(0) € S.

(29)

B. lllustrative Example and Outline of the Proof

We now illustrate, by means of Example 1, the main
ideas that are used in Sec. IV-C to IV-F to prove asymptotic

periodicity of (25).

The graph of: for the parameters of Example 1 is shown in

Fig. 5. Since there is no intersection with the identity diaaj,
h has no fixed point, as expected. The graphh&fwhich is

depicted in Fig. 6, does, however, have three intersecfions

[p1,p2) with the identity diagonal. Hencé?® has three fixed

Fig. 5. The functiomh for a = 1.2, ¢ = 1, § = 3 on the intervalp1, p2) =
[2.20, 8.13). The function has a discontinuity & = p + 6 = 4.95. The

slope ofh is a? on (p1,d1) and bounded by’ (d1) on (d1, p2) (cf. Fig. 4).

P2

———0
=
%
——0
da
P1
P1d, dy P2
p

Fig. 6. The functiom? for a = 1.2, ¢ = 1, § = 3 on the intervalpi, p2) =

points in this interval corresponding to the 3-cycle shown ij2:20,8.13). The function has two discontinuities df = 5+ 6 = 4.95 and

Fig. 2(a).

do = 2.74.

We illustrate below how Theorem 1 can be used to system-

atically prove thath® has these three fixed points, and tha} )

they are (locally) attractive. This approach is then geird
in Sec. IV-C to IV-F to general solutions of (25). To be abl
to apply Theorem 1 (witm = 1, f = k3, and||-|| = |-|), there
are two key requirements:
(R1) a suitable closed sétthat is invariant undeh® must
be constructed, and
(R2) h3 must be a contraction mapping ¢h

As it shall be seen later, the discontinuities of the funttio

h? play a crucial role in the development. The functiohhas
two discontinuities, which can be seen as follows:

o h(p) is continuous for allp € [p;,p2) except atd; :=
p+9.
h2(p) = h(h(p)) is continuous ap if h is continuous ap
and if 4 is continuous ak(p), [32]. Hence, points of dis-
continuity ared; (discontinuity ofh); andds € [p1,p2)
such thatp+6 = d; = h(dy). Sinced; € domh~1), the
inverseh ! exists anddy = h=!(d;).
Similarly, h?(p) = h(h*(p)) is continuous ap if h? is
continuous atp and if 4 is continuous at?(p). Points
of discontinuity ared, and d, (discontinuities ofh?);
and (potentially)ds € [p1,p2) such thatp + § = d;
h%(d3) < do = h(ds). But sincedy ¢ domh~1)
(cf. Fig. 5), such ais; does not exist. Hencé,> has the
discontinuitiesd; andd..

The discontinuities!; and ds subdivide[p;, p2) into three
disjoint subintervalsfp,, p2) = IsUlLUI; with I3 := [py,ds),

= [da,dy), and I; := [d1,p2). Figure 7 illustrates where

gne of the subintervald,, is mapped by repeated application

of h. It can be seen that3(I;) C [dy, p2) = I;. Furthermore,
sinceh(ps) < ds (cf. Fig. 5), the same property holds for the
closure ofly; that is, [d1, po] is invariant underh?,

h3([dy, pa]) C [da, pa-

Notice thath([dy, p2]) and h?([dy, p2]) (the same intervals as

(30)

h(I;) andh?(I;) in Fig. 7, but with closed right bounds) are
closed intervals contained ify and I, respectively. It can
be shown that, undéei?, they are invariant and attractive for
any point in/3 and I, respectively. Hence, we can construct
closed sets invariant undér (requirement (R1)).

For (R2), we focus again on the intervAl. Consider the
derivative ofh? on (dy, p2). By the chain rule, fop € (dy, p2),

d(h?)
dp
whereh/’ refers to the first derivativ%%. Similar to the argu-
mentation in Fig. 7, one can see that(dq, p2)) C (p1,d2)
and hz((dl,pg)) - h((pl,dg)) - (d27d1). From Flg 5, it
can be seen thai'(p) = a2 for all p € (p1,da) U (da,d)

and thath/(p) < ¢'(dy) for all p € (d1,p2). Therefore, for
p € (d1,p2), we get from (31) the following:

d(h?)
dp

(p) = W' (h*(p)) - W' (h(p)) - K (p), (31)

(p) <a®-a?-g'(dy) =a'g (p+9) =0.084. (32)




I 3 while d; € dom(h~1)
h(I1) e div1 = h7(d;)
h2 (1) ————®o increment;
e e S end while
D1 d, dy D2 N =i+ 1.

p If there exists ann € N such thatd,, ¢ dom(h~!), Algo-
Fig. 7. Mapping of the interval; under repeated application af On the r_lthm 1 terminates, and the obtained geque{wle da, ... } IS
top line, the intervall; = [d1,p2) is shown as a thick line. This interval finite. For all problems of an exhaustive search that we have
is mapped tdh(11) = [h(d1), h(p2)) = [p1, h(p2)) (cf. Fig. 5), shown on conducted, this has actually been the case. For the purfose o

the second line from above. Notice that the obtained intasvaignificantly this article, we assume henceforth that the algorithm termi
shorter due to the slope df being significantly less than one dd:, p2) !

(cf. Fig. 5). The intervalsh?(I;) = h(h(I1)) and h3(I;) = h(h2(I;)) Nates.
(third and fourth line from above) are obtained accordinghe interval length Assumption 1Algorithm 1 terminates.
increases for the latter two mappings, since the slopk isfgreater than one : : ; ; ;
on [pl_, dl): Still, after one cycl_e of three mappings, the resultingrivieis The assumption is esser]t_lally CheCke_d by runn!ng Algorithm
contained in the original one, i.&3(I1) C 1. for a concrete problem; if the algorithm terminates, the as-
sumption is true.
Proposition 2:Let D; := {dy,...,d;} with d; defined by
From this, it follows (by the application of the mean Va'”&\lgorithm 1. The following statements hold:
theorem, [32]) that for any closed intervaél C (di,p2), () Vdi,d; € D with i # j, d; # d,;
the contraction mapping property in Theorem 1 holds With(ii) d; [;L(p )]\;L_(; ], Vi < No1
L=a*¢'(p+0) < 1. Even though the closed interviah, p2] dz\r Le hm) ;L(];l)) ;
's not contained inds, pz), Ir := i (da, po]) is contained (iiiy A'is continuo[;s ofp1,p2) \ Dy, Vi < N—1,
(see Fig. 7). Furthermorel; is itself invariant underh?, BN is continuous Oﬂpi pz)\D;V .
which follows directly from (B0)r°(1) = h*(h([da, pa])) € Proof: (i): Proof b cor71tradiction Assume there exist
h3([dy,p2]) = 1. Theorem 1 thus ensures that there e>5istsda 4 e h y e dd — d A ith
unique fixed point inf,, and that every starting point if, %> % € DPn-1 With i # j andd; = d;. Assume, without

converges to this fixed point. Furthermore, since loss of geqeralityj > i and letm_i: Jois N_z_ 2. Then,
from Algorithm 1,d; = d; = h™'(dj—1) = h™?(dj—2) =

R3(I11) = h3([d1, p2)) C R3([d1,p2]) = I, (33) --- = h7"(d;); that is, the sequence @f’s is periodic with
periodm, and Algorithm 1 never terminates, which contradicts
with Assumption 1.

(i): By Assumption 1, the sequencgl;,ds, ...} defined
by Algorithm 1 is finite and equal t®,_;. Therefored; €
dom(h~!) forall i < N—1 anddy_; ¢ domh~!). From
Yom(h—1) = [p1, h(p2))U[h(p1), p2) (see (28)), it follows that
d; & [h(p2), h(p1)) for all i < N—1. Furthermored; # h(p:)

the fixed point is attractive for all points in the originatenval
1.

For the intervalsl, and I3, one can proceed similarly and,
hence, show that every point p;, p2) converges to a fixed
point of 3. Furthermore, we know by Corollary 1 that ever
solution to (25) ends up ifp1, p2). Therefore, the solution to

(25) for the considered example is asymptotically 3-pecnodcan be seen by contradiction: assumihg- A(p, ), it follows

for any initial valuepy > 0. 1 1 .
. : . from h(p;) € domh™ ') andp; € dom(h ') that there is
To treat the general case in the remainder of this sectiof, ) € Dy With dirs = h=2(ds) = h~1(p1) = p+ 6 = di,

we proceed analogously to this example. The constructigvfﬁich contradicts with (i)
of N closed subintervals dfp1, p2) that are invariant under Since h-1 maps 1o ) (see (28)), we have B
hN proceeds in two steps. First, half-closed intervhlsare b Udy ) € | P ) 'I]'?c;?gir)]er Withd e - don(h—lyflthTs
generated that covép,, p») and possess the sought invariance - N*ﬁ p1,p2). 109 N-1 ¢ ’
property (Sec. IV-C). Second, closed intervdis C I; are ' TP1€S thatdy— € [p1,p2) \ (Ip1, h(p2)) U [A(p1), p2)) =
constructed that inherit the invariance property from rtheEh(I.’.?),’h.(p ). . . . .
supersets (Sec. IV-D). In Sec. IV-E, we show tdf is a (if): First, we provg by induction thab" is con.t|_nuous on
contraction mapping on these intervals, which then allows 1f’ II)IQ) \ ?ﬁ Iotrh all tl tg N t_ 1.t Frorfn. F_’rolpoiltlon L tﬂ),
(in Sec. IV-F) to apply Theorem 1 and conclude that solutioﬁ? oflows that e statement IS true fat= ~. Assume the
to (25) are asymptoticallyV-periodic. statement holds for some< N — 2 (induction assumption

(1A)); and consider

C. Invariant Subintervals (Left-Closed, Right-Open) h 1 (p) = (k' (p)), p € [p1,p2)- (34)

Motivated by the example of the previous subsection, the 1, js continuous ap and % is continuous ath’(p), then
left-closed, right-open intervalg;, are obtained by splitting the compositiorhi*! is continuous ap, [32]. Hencehit! is
up [p1, p2) through a sequence of poin{sly, ds, ...}, di € guaranteed to be continuous §n,ps) except for the points
[p1,p2), Which represent discontinuities @V and are ob- D; and the poin with 1 (5) = d; (d; is the discontinuity of
tained by iteratively applying~" until somed; ¢ dom(h™"). 1y Byt hi(p) =dy & p=hi(dr) = dis1 (Sincei < N—2,
We give an algorithm to compute these discontinuities:  the j-times application of the inverse map;*, is defined).

Algorithm 1: Therefore,h’*+! is continuous orpy, p2) \ (D; U {di41}) =
di:=p+6 [p1,p2) \ Dig1.



Next, we prove thak? is continuous or{p;,p2) \ Dn_1. (i) Zint LN Tint.

For this, consider [di_q,dn_1) 1>1
(i) L_ 1= =
WY (p) = h(h¥ "1 (p), P € [p1.p2)- (35) p1dv—1) =1

. . dn— ,di, 1>1

By the same argument as above) is guaranteed to be (iv) int(/y_1) = {(dN 1,di-1) .
continuous on[p;,p2) except for the pointDy_; and the ( {V‘ll’pQ) =
point 5 with AN —1(5) = d1 & h(p) = h-N-2(d}) = dy_1. Proof: The pro_o_f is given in Appendix A. =
But a pointp with 1.(p) = dy_; does not exist ifip: , p») since Proof (Prgpqsnmn 4): We present the propf of (i);
dn_1 € [h(p2), h(p1)) (by (ii)), which is not in the range of the proof of'(u) is analogous and therefore omitted. From
h (by Proposition 1, (iv)). Therefore;" is continuous on Leémma 1, (), we know that, for any € 7, h(I) is
[p1,p2) \ Dn_1. contained in an interval of. Since the intervals are disjoint

The pointsDy_; divide the intervallp;, p») into N subin- (Proposition 3), there is exactly one interval that corgaifY ).
tervalsZ := {Iy,...,Ix}. The intervals are named such that herefore, it suffices to consider only the lower bound of an
I; hasd; as a lower bound for < N'—1, andIy has the lower intérval to identify where the interval is mapped to.
boundp; (cf. Sec. IV-B). A formal definition of the intervals _Notice that, sinceh is strictly increasing (Proposition 1,
is given next. Letll : {1,...,N—1} — {1,...,N—1} be a (), for all [a,b) € I, h(la,b)) = [h(a),limy = h(p)).

permutation of thel,’s such that From Algorithm 1, i_t follows thath(di) = difl for all
i € {2,...,N—1}. Since there is exactly one interval #h

dngy < dngsn, Vie{l,...,N—2}. (36) with d;_; as lower bound, for all € {2,...,N—1},
Furthermore, let and: be the indices of the smallest and h(I;) = h([d;, %)) = [di—1,%) C I;—1 (40)

greatestd;, i.e. 11(1) = i andII(N —1) = i. Then define . _ _ _—
Similarly, sinceh(d,) = h(p + 0) = p1 by the definitions of

I = [di, dH(Hfl(i)Jrl)) Vi <N —1,i 7&; (37) di andpy, it follows that
[ = [d;, p2) (38) h(I) = h([d1, ) = [p1,%) € In (41)

Iy == [p1,d;); (39) .y o
From Proposition 2, (i), it follows thak(p;) € [dy_1,%) =
that is, intervall;, hasd; as a lower bound (closed) and thely_,. Therefore,
next bigger element fronDy_; as an upper bound (open),
except for the intervals at the boundaries [pf,p-). Since h(In) = h(lpr, %)) = [A(p1), %) € In—1 .
each interval is uniquely specified from (37)—-(39) by either The corollary follows directly from Proposition 4:
its lower or its upper bound, we sometimes omit either one Corollary 2: The following statements hold:
of the_m and wnt_e[d, %) Or [*,d). For. thg interior (the largest () WN(L) C I, VI; € T.
contamed_ open mtgrval) af;, we write in{(7;). o (i) AN(int(L;)) Cint(l;) VI; € L.
Proposition 3:All intervals I; € Z are mutually disjoint and
nonempty. ] .
Proof: Disjointness of the intervals is given by theif®- Invariant Closed Subintervals
construction and Proposition 2, (i). Furthermore, becaafse The intervalsZ cover the whole domain of interefgt; , p2),
Proposition 2, (i), the intervals (37) are not empty. Sincand they are invariant under’”. However, closed intervals
d; € Dn_1, it follows that d; € [p1,p2) and d; < po; are required if Theorem 1 is to be applied. The proposition
therefore, intervall; in (38) is not empty. To see thaty below states that such subintervd]sC I, exist. A technical
in (39) is not empty, we assume that it is and lead this sssumption is required for this proposition:
a contradiction. Fromp;,d;) = 0 it follows that p; = d; Assumption 2h(ps) # dy—1.
(p1 > d, is not possible sincé; € [p1,p2)). Fromd; = p; € Notice that withh(p,) < dy_1 by Proposition 2, (ii), this
dom(h~1), it follows thatd;; is defined by Algorithm 1 and implies
déJrl = hil(di) = hil(pl) = ifl(h@+ 5)) =p-+ 6 =d. h(pg) <dn_1. (42)
But d; 1 = d; (with ¢ > 1) contradicts Proposition 2, (i).m
Proposition 4:The following statements hold:
(I) h(IN) CIn_1, h([[\],l) Cln_2,..., h(.[g) C I, and
h(l) C In.

_Proposition 5: There exists a collection of intervals =
{I,I5,...,Ix} suchthat forali € {1,..., N} the following
statements hold:

(i) h(int(Iy)) C int(Ix_1), h(int(In_1)) C int(Iy_s), (ﬂ)) § Eﬂ:n(sje)dc .

..., h(int(I5)) Cint(Iy), andh(int(1;)) Cint(Iy). i) WN(D) C I,
The following lemma is used in the proof of this proposition th(}i)_C }7
(statements (i) and (ii)) and later in Sec. IV-D ((iii) and)ji o
Lemma 1: Consider the collectionZ = {I,...,In}
of intervals I; defined by (37)-(39); and letZi;y :=
{int(11),...,int(Ix)}. The following statements hold:

Proof: The closed intervald; can be constructed along
the same lines as illustrated in Sec. IV-B, by taking thewles
of the right-most intervald;, p»] and considering its mappings
. N hi([d;, p2]), i > 1, throughh. The details of the proof are given
(ORAE in Appendix B. ]



E. Contraction Mapping
In this section, we show that" is a contraction mapping.

To this end, we first derive an upper bound less than one o prds ds d3

the derivative ofhV for the interior of the intervalq.

Proposition 6: 2V is differentiable on all open intervals

int(Z;), I; € Z. Furthermore, there exists an 0 < L < 1,

such that

d(hN )
dp

The following Lemma is needed in the proof.

Lemma 2:For allp € [p1, p+9), there exists am(p) € N
such that

p7h(p))"'7

()‘<L Vp € int(l;),V1; € T.

ROy < p+§ and P (p) > p+ 6.

(43)
Furthermore, there exists a € Nt (independent op) such
thatm(p) < N, and

a?N < aﬂi&. (44)
P1
Proof: The proof is given in Appendix C. |

The lemma says that if(0) starts anywhere irp;,p + 0),
there is a maximum numbe¥ of iterations (25), for which
p(k) remains in[py,p + 9).
Proof (Proposition 6): Take anyl;, € Z andp € int(1;).
Differentiability: By Proposition 1, (ii),h is differentiable

at p. Using the chain rule [32] and Proposition 4, (ii), it can

be shown by induction that’ is differentiable atp for all
1<j<N.
Contraction mappingBy the chain rule,

(RY)' (B) = I (WY~ (p)) - (™~ 1) ()

= JI rwe)y=][re (45)
je{0,....N—1} peP
with P := {p,h(p),...,hYN~1(p)}. Notice from Proposi-

tion 4, (ii), that, for every poinp € P, there is exactly one
interval I € Z such thatp € int(I).

Let Z;, C Z denote the set of all intervals € Z with
I < p+ ¢ (intervals left of the discontinuity + ¢), and let
Tr C T denote the set of all € Z with I > p+ ¢ (intervals
right of the discontinuityp + §). Furthermore, letV;, and Ny
denote the number of elements In, and Zx, respectively.
Notice thatN;, > 1 and Nz > 1. Then,

R(p)=a*>0 Vpeint(l), €I, (46)
follows directly from (26); and
0<h'(p)=4g'(p) < g (p+9)

where the first inequality follows frong’(p) = % >
0, and the second inequality follows from bemg strictly
decreasing, which is seen frogf(p) = s < 0. With
these results, it follows from (45) that

0 < (WY (B) < a®M (' (5 +8))"" 48)

Sincea® > 1 and ¢'(p + §) < 1, whether the maphv
is contractive depends on the ratio 8fz to N, which is
investigated next.

Vp eint(l), I € I, (47)

(02

§Ig§I4 §Ig§ Is I L ' Is L Is

d7 do de d1 ds P2

Flg 8. lllustration of the interval<Z obtained for the parameter values
1.2, ¢ = 1, and§ = 9.6 (for better visibility the relative scaling of

the intervals has been adapted). There are two distinatvaiteubsequences

satisfying (49):Z, = {l4, 13,12} andZ, = {9, I, I7,Is}.

Define a subseZ C Z as a maximum sequence af
intervalsiy,, I, all being left of p + ¢:

7N17...
Z ::{IZ’ Ig_Nl7 c. ,Ig,N(mfl)}y m S NL7
such thatly, Ip—1,. .., Iy (m-1) € L1,
andly_y(nv-1); Llo—ym € IR,

(49)

Let there bex > 1 distinct interval sequences (49), which we

call Z,,...,Z, with mq,..., m, their numbers of elements,

respectively. Notice tha;, = my + --- + m,. An example

with two interval sequences,, Z, is provided in Fig. 8.
From Lemma 2, it follows thatn; < N for all j < x (N

is as defined in Lemma 2), and

NL:ml—i-"'—‘rmKSHN. (50)

For each sequence of interva;[§, j <k, there is at least one

distinct intervall € Zr (namely,I,_,»); hence,
NR Z K. (51)

Combining (50) and (51), we obtain the sought bound on the
ratio of N;, and Np: N;, < kN < NpN. With this result, we
can rewrite (48),

0< () () < % O 5 4 )

= (a®N g/ (p+8))"" (52)
Using (44) from Lemma 2, we get
a*Ng'(p+6) < azmg’(ﬁJré). (53)

b1

The right-hand side in (53) depends on the problem param-
eters, and it can be shown to be less than one (the proof is
omitted due to space constraints; the symbolic calculagon
provided in a supplementary Matlab script). With this, the
statement of Proposition 6 follows from (52) with :=
(@®N g'(p+8))Nr < 1. ]
From Proposition 6 and the mean value theorem [32], it
follows:
Corollary 3: bV is a contraction mapping on any interval
of Z (defined in Proposition 5); that is, there exists An
0 < L < 1, such that

WY (p) — N (B)| < Llp—p| Vp,p € I;,VI; € .

F. Main Result

Equipped with the results of the previous subsections, we
can now state the main result of this section:

Theorem 2Under Assumptions 1 and 2, the solution to (25)
is asymptoticallyN-periodic for any initial conditionpg > 0.



Proof: By Corollary 1, it follows that there exists an; € a unique periodic solution with a known period is guaranteed
N such that as an alternative to simulating the Riccati equation andnigav
RN (po) € [p1, p2). (54) to interpret the result. The above conjecture has a préactica
ramification: if the algorithm does not terminate “quickigne
can perturb the parametérslightly (which affects estimation
quality only insignificantly as by Corollary 1) and restanet
RN (pg) € I, (55) algorithm.
While we propose variance-based triggering as a framework
for reduced communication state estimation for systemh wit
RN 50y € I (56) Mmultiple sensors and states (and also applied it to such a
system in [6]), the analysis herein focuses on scalar system
From Proposition 5, (i) and (iii), Corollary 3, and Theowith a single sensor and, in particular, on the analysis of
rem 1, it follows that there exists a unique fixed poiiitof the corresponding scalar Riccati equation (22). Whether the
h™ (hence, anV-periodic point of (25)) inl; and that, for all results of asymptotic periodicity (Theorem 2) and alsantie

Since the disjoint intervalg cover [p1,p2), there exists a
unique: € {1,..., N} such that

By Proposition 5, (iv),

pE I boundedness (Corollary 1) generalize to the matrix casp (21
Jim h™N(p) = pj. (57) are open questions.
] When a periodic solution to the switching Riccati equation
In particular, forp = h{™1 2N (p,) and by (56), is found (for both the scalar and the matrix case), sensor
lim AN (h(m1+2)N(p0)) = lim A(MT2EmN (0 transmissions can be implem_ent_ed as time-_bas_ed, periodic
m—+00 m—00 schedules. The rate of the periodic transmission is, howeve
= lim_ h"™N (po) = p;. not a design parameter as in traditional time-sampled astim

tion, but obtained from an event-based approach, where the
designer specifies tolerable bounds on the estimationnagia
Hence, the method can be used as a tool for designing periodic
sensor schedules for a multi-rate sensor system.

The proposed method for event-based state estimation is @lternatively, the estimation method can be implemented as
direct extension of the classic Kalman filter to a distrilobuteshown in Fig. 1, where each sensor computes the variance of
estimation problem with costly communication. Startingnfr the estimator on-line and uses it to decide whether or not to
the design of a discrete-time Kalman filter with access to altoadcast its measurement. This way, sensor transmitcates
sensor measurements at every sampling time, the presenigdpt in real time to unforeseen events (for example, vgryin
method allows the designer to trade off communication reensor noise conditions as discussed in Remark 2, or packet
quirements with estimation performance by selecting bléta drops). This implementation of estimation with varianceséx
thresholds for each sensor (these thresholds are the aiygering is in accordance with the common understanding o
additional tuning parameters). event-based methods (where events are generated on-tine an

The presented event-based estimator is the optimal Bayeséan respond to unexpected changes), whereas with the jeeriod
estimator given the triggering policy that a measurement jiplementation mentioned above, transmission instangs ar
transmitted if, and only if, its prediction variance exceedl computed off-line and can thus not adapt in real-time.
given threshold (equation (17)). Thus, equation (17) regmés  Various extensions of the presented event-based estimatio
a soft constraint on communication, in that transmission @pproach are conceivable. Instead of making the transmit
a measurement only occurs if otherwise the measuremeetision based on a measurement’s prediction variance, it
cannot be predicted well enough. A focus of this article isould be based on its prediction error; that is, the diffeeen
on the study of the asymptotic properties of the resultingetween the measurement and its prediction mean (see [4],
variance recursion (the switching Riccati equation (2a))d [5]). A promising approach is to combine the two methods
on proving its convergence to periodic solutions for thecgle by augmenting fixed minimum sensor communication rates to
case of an unstable scalar process (Theorem 2). The evéeep the variance bounded with triggering thresholds oh rea
based estimator variance being periodic in the limit meafigne prediction errors. If improving the estimator perfamce
that a periodic, time-based transmit schedule is optiméén |ocally on each agent is of interest (for example, when the
above sense. The result thus establishes an interestikg #atimate is used in feedback for controlling an actuator),
between event-based and time-based optimal state estimath second estimator can be used to compute an improved

Assumption 1 is an important assumption in the derivastimate from using the data received from the network and,

tion of Theorem 2. In all simulations that we performedadditionally, exploiting its local sensor data at everydistep
this assumption was satisfied. Based on this observation gsge [4]).

preliminary analysis not presented herein, we conjectua¢ t
Assumption 1 holds true for almost all values of the problem
parameters (in particular, the threshé)d However, establish-
ing this result is an open question beyond the scope of this
article. As is, Theorem 2 provides a sufficiency test for peri For the proof of Lemma 1 at the end of this section, we
odicity (if the assumptions are satisfied, global convecgelo need the following lemma and corollary.

V. DISCUSSION

APPENDIXA
PROOF OFLEMMA 1



Lemma 3:Let Z = {I;,I5,...,Iy} be a collection of [(a;,3:) € Z], B; € U. We prove by contradiction that this
nonempty, mutually disjoint interval§; := [a;,b;) (or I, := implies 38; = b;, and, hence, that the choice (61) is unique.
(as, b;)) with a;, b; € R. A unique representation df is given Assumep; = b;, b; # b;. Then, from the above discussion,
by the setsC = {a1,as,...,an} andU = {by,bs,...,bn} there exists also an intervaly, b;) € Z [(as, b;) € I], ay € L.
of all lower and upper bounds, respectively, in the followinFor [a;,b;) [(a;,b;)] to be nonempty, it follows that; <

sense: the collectiof := {I;,I»,..., Iy} of intervals con- b;, which implies by (60) that; < b;. Similarly, for [a,, b;)

structed such that, for all j with 1 <i4,57 < N, [(a¢, b;)] to be nonemptya, < b; implying a, < a;. But then,
- - [ai, bj)Nae, bi) = lai, bi) # 0 [(ai, b;)N(ae, bi) = (a;, bi) #
{i = [aiaﬂi) (Otli :7: ai76i>)7 a; € ‘C; Bi S Z/[7 (58) (Z)]' thich Contradicts (59) ! [
I; #0, and L;NI; =0, (59)  cCorollary 4: Let 7, Z, be two collections of nonempty

and mutually disjoint intervals. Lef; andi/; be the sets of
lower and upper bounds, respectively, f, and let £, and

This lemma is useful, since it allows one to work with th be the sets of lower and upper bounds, respectivelfiof
H H 2 1
(unordered) sets of interval bounds and U/ instead of the If £y = Lo andlly — Us, thenZy — T,

actual intervals. The unique relationship between the dsun - .
(which lower bound belongs to which upper bound) essentiall Proof: Follows dlrec'FIy fT.Om Lemma 3. . . n
Proof (Lemma 1): (i), (ii): Statements (i) and (ii) are

follows from all intervals being disjoint and nonempty. treated simult v (i) in brackets wh ired
Proof: We present the proof simultaneously for the caseoared simultaneoustly (@ N brackets where require )-
By Proposition 3, the intervalsz = {I;,I,...,

of left-closed, right-opeg intervals; = [y, 3;) and for the 7 B p 1 7 g
case of open intervald; = («;,3;) (where required to v} 7t ”{[pld’. 'H('l)t)’ [ HéU’ ne)), t, [THh(N—%)»pz)} I
distinguish the two, the latter case is augmented in squfﬁ@ mutualdy disjoint —and -honemply.  Iherefore, —aiso
the intervals Ziy = {int(L),int(lz),...,int(In)} =
brackets). d p d o wall
Since, for alli < N, I; € Z is nonemptyga; < b;. Since the {(p1, dny)), (), dn)), - (dnv-1), p2)} are mutually

intervalsZ are mutually disjoint, there exists a permutation oq'S_JO'nt and nonempty. Hence, by Lemma 3, [Zin] is
indices - {1 N {1 NV such that uniquely represented by the sets of lower and upper bounds

L= {p1,duq), - dov-1} = {p1.d1,....dn_1}, (62)

U= {dnay - dan-1),p2} = {p2.d1,...,dv_1} (63)
and the conditions (58) and (59) (note that the g&tsndi/
a1 <by <ag <by<---<ay <by. (60)  are the same fof andZy, but (58) is different).

Define the collection of images df on Z [Zin] as Z;, :=

) {h([pla dH(l)))7h([dH 1) dH(Q)))v s 7h([dH(N71)ap2))}
a;=a; and p;=b for1<i< N (61)  [Zint,n = hE(phdHu))), h((dnqy, dnez))), - -
h((dr(n—1),p2)) }]. Hence, by definition,

exists, it is unique, and = 7.

iy < by < G <bae) < S e < bagy)-

Assume w.l.o.g. (by renaming of the intervalsZ that
Notice that the choice

satisfies (58), (59), and = Z trivially. Hence, a collection of
intervalsZ sz_msfylng _(58) _and (59) exists; it remains to show T hy 7, Zint LN Tienl- (64)
that the choice (61) is unique.
We first show that, for any;; € £, there is exactly one  Since, by Proposition 1, (i); is strictly increasing on each
interval inZ that hasa; as a lower bound. We will show this I; = [a,b) € Z [I; = (a,b) € Zin], it holds thath([a,b)) =
by contradiction. (h(a),limy = h(p)) [h((a,5)) = (h(a), lim,, = h(p))]. There-
« Assume there is more than one interval with as fore, the sets of lower and upper boundsf [Ziy ] are
a lower bound; that is, there ar;,b;), [a;,b) € given by
Z [(a;,by),(a;,be) € I] with b;,b, € U and
b; > ai,J by > a; (otherwise the jintervals would beln = {Ma)[a € L} = {h(p1), h(d1), h(d2), ..., h(dn 1)}
empty, which contradicts with (59)). But thefa,;, b;) N = {h(p1),p1.dy,....dn_2}, (65)
[ai,be) = la;, min(b;, be)) # O [(ai,b;) N (ai,be) = Uy == { lim h(p) | b€ U}
(a;, min(b;,be)) # 0], which contradicts with (59). p/b

« Assume there is no interval ifi that hasa; as a lower = {h(p2), lim h(p),h(dz),. .., h(dy-1)}

. . p.d1

bound. Then, there can only bé — 1 intervals in total, 1 d d 66
since it follows from the previous discussion that each {h(p2), P2 i, dy -2}, (66)
of the remaininga; € £\ {a;} can be chosen at mostyhere we used the facts thatis continuous from the right
once as a lower bound. This contradicts with (58) (thgt all o € £ and continuous from the left at all€ ¢/ \ {d, };

collectionZ having N elements). and that
Analogously, it can be shown that, for abye U, there is
exactly one interval ir that hash; as an upper bound. The h(dy) = h(p +0) = p1 (def. of p1),  (67)
detailed proof is omitted. h(d;)=d;—1,2<i<N-1 (by Alg. 1), (68)
Now, takea; = a; for anyi € {1,..., N}. From the dis- lim h(p) = a2(p+6) + 1 = ps (def. of py).  (69)

cussion above, it follows that there is an inter@), 3;) € 7 p/dy



[ i ) The lower and upper bounds &, (Zi ) are given by

[ , , ; ; ; ; ; ; \ > ~
le d h(pQ) dN—lh(pl) d pIQ R ‘Ch = {dN71>p17d17"'adN72}5 (74)

‘ _ , Uy = {dn-1,p2.d1,....,dN_2}. (75)
Fig. 9. lllustration of the enlargement of the intervdl$ h(p2)) and

[P(p1),d) to [d,d 1) and[dn 1, d). The points unspecified are elementsince the intervalsZ;, [Zi,] are nonempty and mutually
from {d1,...,dn_2}. All intervals remain nonempty and mutually dlsjomt'disjoint, and/fh —r andeIh — U, it follows from Corollary 4

thatZ, = [iim,h = Tint]- Using this result, statements (i) and
Since h is injective (Proposition 1, (iii)),h(I; N I,) = (i) are given by (73). _

h(I1) M h(I5) holds for anyly, I C [p1, po), [33]. From this, ~ (il): First, notice thatl <i < N — 1 and
and the fact that the intervalS[Zin] are disjoint, it follows that {[d h(ps)) if 7> 1

the mapped interval®;, [Zi ] are also disjoint. Furthermore,  h([;) = h([d;,p2)) = b e
since h is not constant on any intervdl € 7 (it is strictly e [pr, hp2)  ifi=1
increasing by Proposition 1, (i), the intervals [Zin,n] are  Sinceh(I;) € 7y, it follows that

all nonempty. Hence, by Lemma 3, [Zin] IS uniquely o

represented by, andif,. Notice thatl, andi, have the d= { i1 fi>1 a7

(38)

same elements a8 andi/ except forh(p;) andh(pz) in Ly, - D1 if i=1
andlf;,, anddy_1 in £ andlU/. We show next that the intervals
Ty [Zint,n] are contained in the intervals af [Zin].

To see this, notice first that the elements(pfu U, U LU
U = {p1,p2,h(p1), h(p2),ds,...,dy_1} have the following
order relation:

(d has been defined above as the lower bound of the (unique)
interval inZ,, that hash(p2) as an upper bound). Notice that

in Z, there is exactly one interval witli;_; as lower bound
(for i > 1) and exactly one interval witp; as lower bound.
Therefore, it follows fromd, dy 1) € I, =1 (see (71)), and

pr< e < h(p2) <dn_1 <h(p) < .-~ < p2, (37)—(39) that
e T @0 gy < [y i1 [E i
because SN [p1,dN_1) if i =1 Iy ifi=1
p1 < h(ps) (5+6 < p» and Prop. 1(i) =Liy1- (78)
h(p1) < p2 (Prop. 1, (iv)) (iv): Notice thatl <i < N —1 and
h(p2) < dn-1 < h(p1) (Prop. 2, (i)} BInt(In)) = h((pa, de), = (h(p1),ds—1) ifi>1
di € [p1,h(p2)) U (h(p1),p2), Vie{l,...,N-2} NI oy WP 6y t69)| (h(pr),pe)  fi=1.
(Prop. 2, (ii)) (79)

Therefore, the upper bound 6f, h(p2)) € Zy [(*, h(p2)) € Sinceh(int(Iy)) € Zint s, it follows that
Zint,] can be changed tely_;, and the lower bound of o
(h(p1),*) € In [(M(p1),*) € Zintn] t0 dy_1, without J— {di—l if i >1 (80)

affecting the mutual disjointness and the nonemptinestef t D2 ifi=1,
intervals. This modification of the intervals is illustretén .
Fig. 9, and we make it formal next. and, from(dn—1,d) € Zini,, = Zint (€€ (72)) and (37)—(38),
Let d be the lower bound of«, h(pz2)) € Zp, [(*, h(p2)) € B (Ay_r,diy) Fi>1
Tint,n), and letd be the upper bound ofh(p:),*) € Zy (dy_1,d) = p L Gt int(Iy_1). m
[(h(p1), *) € Tinn]. Then, define (dy-1,p2)  iFi=1
In == {1 €T, | I # [d, h(ps2)) andI # [h(p1),d)} APPENDIXB
U{d,dn_1), [dn_1,d)}, (71) PROOF OFPROPOSITIONS
We defineN intervalsi, ..., Iy and prove that the prop-

that is,Z;, has the same elementsBsexcept for the replace- erties (i\—(iv) hold for these. Let,; :— i ;
i e — . :=1i+1 (> 1). We define
ments|[d, h(p2)) — [d.dy_1) and [h(py),d) — [dy_1,d). (-(v) ' >1)

ivel
Similarly, define recUrSIvely
~ — IN—l = hml([dﬂpQ])a (81)
Tintp =1 €T 1#(d,h and! # (h(p1),d - -
mop = AL € T | T (d: h(pz)) andl # (A(pa), d)) L1 = h(L) Vie{l,...,N-1}, (82

U {(d, del), (dN,hE)}. (72)
where —y’ is defined in (1).

Since, from (70),[d, h(p2)) S [d.dn-1) [(d,h(p2)) S we first show that (i)—(iii) hold for/y_;. Notice thati
(d.dv-1)] and [h(p).d) S [dy-1,d) [(A@:1).d) S {1 N_1}. We have

(dn_1,d)], it follows from (64) that

[di_1,h(p2)] fi>1

75417, [Zint 2 Tintn)- 73)  N(ldi,p2]) prh(pe)] o1

[7(dz), h(p2)] = {

Prop:.1 (i)



fi>1
if 7= 1 Lem. 1 (i)

C [dgfladel)
@) | [p1,dn-1)

From Proposition 4, it follows that, for alle {1,..., N} and
for all m € N,

(83)

Z—Nl-

(1) C Timyms (84)
R (nt(L;)) C int(Li—y m)- (85)

With this and (83), h'([d;,p2]) = h''(h([d; p2])) <
RN EG_y1) € Ii—y1)—n(i—1) = I, and

In-y = W™ ([ds,p2]) = B ({dz, pa]) © W) o5 P[P o))
), diey) i1
Pop. 10| [A(p1),p2)  if i =
(dy-1,di—q) ifi>1 )
< i = int(Iy-1) € In-1.
Prop. 2 <ii){(dN1,p2) if i =1 Lem. 1(v) (In-1) € In-a

(86)

Thus, (i) holds forly_;.
Property (i) can be seen as followsi([d;,ps])

[h(d;), h(p2)] is closed. From (83) and Proposition 1, (i), it fol-

lows thath is continuous and strictly increasing &[d;, ps]).
Similarly, by (84), h™([d;,p2]) = h™ (h([di,p2])) C
R (Li—y1) € Li—ym, m > 1; thus, h is continuous and

strictly increasing onh™([d;, p2]). Since, for a continuous

and strictly increasing functiorf and a,b € R, f([a,b]) =
[f(a), f(b)] (the image of a closed interval undeft is a
closed interval),h™([d;, p2]) is closed for anym > 1 and,
in particular, form = m;.

To show (iii) for Iy_1, letmy := N —m; (> 0). We then
get with (86), (84), and (38)h2(In_1) C h™2(Iny_1) C
I(N*l)*Nm2 = Ii = [dfap2) - [dz7p2]' Property (”I) then
follows by

W (Iy2) = W () € B (o)) = e

Hence, we have shown that (i)—(iii) hold fer= N — 1. We
next prove (i)—(iii) fori € {1,..., N — 2, N} by induction.
Induction assumption (IA): (i)—(iii) are valid for somee
{1,...,N — 1}. Show that this implies that (i)—(iii) hold for
i —n 1.
Property (ii) holds since

Liy1 = h(Ii) C h(int(1;)) = int(;

C ) € I;
IA (i) (85)

—n1 —n1-
Since I; C I, (A (ii)), h is continuous and strictly
increasing onl;. Moreover, I; is closed (IA (i)). Together,
this implies that the image undér, I;_,; = h(I;), is also
closed; hence, (i) is true.
Property (iii) can be seen to hold by
WY (I 1) = WNENL) = n(hN(L)) € h(l) =

(82 1A Gi 8 N

This completes the proof of statements (i)—(iii).

To see statement (iv), takg € Z for anyi € {1,...,N}.
Let mg :=i—xi (> 1). Then, from (84) and (38),™(I;) C
Ii*Nms = IifN(ifo) = Ig = [dg,pg) - [dg,pg], and, with this

and (81), ™™ (1;) = h™ (k™2 (1) © h™([dg, pa]) =

In_1. Letmy := (N —y i) —1 (0 < mg < N —1). Then,
with the preceding expression, (81), and (82), we get

hml +msz+mag (Iz) — hm4 (hm1 +ms3 (Iz)) g hm4 (INNfl)

= IN-1)nms = LN-1)—n (N i)—-1) = Li- (87)

Now, consider three different cases for

First case:i = N. Sincem; +ms +mq = (i +1) + (N —
i)+ (N — 1) = 2N, (iv) follows directly from (87).

Second casei < i < N. Sincem; +ms+mg = (i +1) +
(i—1)+(N—i—1) = N, (87) reads:™N (I;) C I;, which implies
(iv) as follows: 2N (I;) = h™N (WM (1;)) € AN (I;) C I.

Third case:1 < i < 4. Sincem; +mgz +mq = (i + 1) +
(i—i+N)+(N—i—1)=2N, (iv) follows from (87).

APPENDIXC
PROOF OFLEMMA 2

Take p € [p1,p + §). Let k¥ € N7t such that
P, h(p),...,hF~1(p) < p+6 (such ak exists since < p+9).
Then, from (26),

hE(p) = a> h* ' (p) + 1 > a® K" (p), (88)

and, therefore,

hk(p) > ok p. (89)

Since |a| > 1, limy_, a®*p = oco. Hence, there exists an
m(p) € N such that (43) holds.

Now, we seek the largest possible integefp) over all
p € [p1,p+ 6), for which (43) holds. Sincé*(p;) < h*(p)
for all p € [p1,p+d) andk < m(p), the greatestn(p) such
that (43) holds isV € N+t defined by

proh(p1),. . BN p) <p+0 and WV (py) > 5+ 0.
(90)
Hence,N is independent op, andm(p) < N. From (89) and

(90), it follows that

N N N p+0
2NN p < PN Yp)<p+6 = o< a2p7+ .
(p1>0,a2>0) p1
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