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Abstract—A limiting property of the matrix exponential is
proven: if the (1,1)-block of a 2-by-2 block matrix becomes
“arbitrarily small” in a limiting process, the matrix exponential
of that matrix tends to zero in the (1,1)-, (1,2)-, and (2,1)-bloks.
The limiting process is such that either the log norm of the

(1,1)-block goes to negative infinity, or, for a certain polynomial . .
dependency, the matrix associated with the largest power of the as K(«) grows large. In this context, we seek to determine

variable that tends to infinity is stable. The limiting property is What type of feedback yields a decoupling of the states in

useful for simplification of dynamic systems that exhibit modes feedback from the remaining ones in the limit as the feedback

yvith_sufficiently diﬁ_erent time scales. Th_e obtaineq limit then gains become arbitrarily large.

implies the decoupling of the corresponding dynamics. This question is of interest, for example, when designing

Index Terms—Matrix exponential, limiting property, logarith-  multi-loop control systems with high-gain inner loops, cgn

mic norm, time-scale separation. a decoupling of the states allows for a simplified system

description and, hence, a simplified control design. Theirmat

result herein is applied in [1] to derive a time-scale sefia@na

) ) ] ) ] ‘algorithm for a cascaded control system with high-gain inne

The subject of study in this paper is the matrix exponentigla qpack loops. The algorithm yields a system descriptian t

Ay —K(a) A includes the plant dynamics and the effect of the inner feed-

oxp ({ Aoy AQJ t) » t>0, @) back loops. The obtained representation is useful, for gl@m

_ e . for designing an outer-loop controller. This methodology i
in the limit as & () grows large forw — oo in Some sense 10 4 jiad in the design of a cascaded feedback control system
be made precise later. All matrices are complex, ansla real

X ’ . for an inverted pendulum in [1] and for a balancing cube (a
parameter. For different classes Bf«), we derive sufficient

k o multi-body 3-D inverted pendulum) in [3].
]Sandlllnton%case also necessary) condition&¢a) such that,  pgejated to the problem studied herein is the work by
orall ¢t >0,

Campbell et al., [4], [5]. The authors consider the matrix
A —K(a) Ais /) 0 0 @) exponential with its argument being a polynomiallife and
Agy Ags T |0 eAeet derive conditions for its convergence in the limitas+ 0.

That is, we are interested in conditions guaranteeing tiat tIn [4], for example, Campbell et al. present a necessary and

coupling blocks (1,2) and (2,1) vanish (in addition to thel j4 sufficient condition for pointwise convergence of
block). exp((A+ B/e)t), t>0, (6)
In addition to being an interesting matrix problem, the tesu

. L se — 0F. While they are interested in general convergence
can be applied to control systems that exhibit S|gn|f|cantfl N y 9 9

) ) o ; someimit, we seek conditions that yield thgrticular limit
different time scales, such as systems with high-gain feeklb (2); that is, where the cross coupling blocks (1,2) and (2,1)
on some states. For example, consider the system

Fig. 1. Linear system with feedback on the first part of théestector, the
“fast” statesxs.

I. INTRODUCTION

lim exp
a—r 00

vanish.
oe(t) = Apae(t) + Apamws(t) + ult) 3) Before deriving the technical results, this article conéis
ds(t) = Aoyzi(t) + Asos(t), @) with notation and preliminaries in Sec. Il. In Sec. Ill, we

establish lemmas and cite theorems that are required for the
with static feedback on the stategt) (index f for “fast” and development of the main results, which follows in Sec. IV.
s for “slow”), The main results are three different conditions I6i«) that

u(t) = —K(o)x(t). (5) guarantee (2): a sufficient condition that is based on the log

. . .norm (defined in (8) of the next section) efK(«) and that
The matrix functionK («) then represents the feedback 9ail} 2ices no prior assumption on the function( tzlpe Kta)

parametrized byr. The feedback system is depicted in Fig. J%’I’heorem 3); a necessary and sufficient condition for the

A more general multi-loop feedback system with addition Iase wher () is affine (Theorem 4); and another sufficient

reference nputs 1s cons_ldered n [1]. . condition for the case whei () has an affine term and
The matrix exponential (1) is a fundamental matrix (se

&n additional pol ial term”, + > 2 (Th 5). Th
e.q. [2]) of the feedback system (3)—(5). The limit (2) meara. 2dditional polynomial term’, » > 2 (Theorem 5). The

that the dvnamics aof« (1) andx(1) are decoupled in the l_m.tr]gtter two results are based on [4], [5], while the first one
y : i(t) ws(t) upledt IMItis established independently of those. Numerical examples
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[I. NOTATION AND PRELIMINARIES with X : RT — C™*? andY : Rt — C™*P continuously

We useR, C, and R+ to denote real numbers, complexdifferentiable, and complex matricedi, Aiz, Az, Az,
numbers, and nonnegative real numbers, respectively.hor {* (@) Xo, andYq of appropriate dimensions. Notice that the
derivations in the paper, we work exclusively with the vectdnatrix exponential (1) is a fundamental matrix of the ODE

2-norm and its induced matrix norm: that is, ferc C™ and SyStém given by (15) and (16), which is why the study of
A€ Cpxn (15), (16) will be useful in the later development.

" By Fact 1, the unique solutions to (15) and (16) (considered
zl = "ml) . IA| = max |Az||.  (7) individually) are, for allt > 0,
el = (32 ed?) 14l = max]iAall. (@) t
For A € C™*", u(A) denotes thdog normof A, [6]-[8]: X(t) = etAn =Ky, +/0 eAn =KD A1, Y (1) dr
1(A) ;== max{p|pan eigenvalue ofd + A*)/2}, (8) . (17)
Ao Aoa(t—T
where A* is the conjugate transpose df We shall exploit Y () =¢™**'Yp +/ #2077 Ay X (1) dr. (18)

. - . 0
the following properties ofu(4), [6]-[8]: Lemmas 2 and 3 below treat the solutions (17) and (18)

||eAtH < er(A) (9) for different initial conditions in the limit as the log norm
u(A) < Al (10) of —K(«) tends to negative infinity. To establish these two
- lemmas, the following Gronwall-type inequality is used:
wA+B) < p(4) + Bl 11) Lemma 1 (adapted from [10], Theorem 1.9)et  v(t),
where A, B € C"*" andt € Rt a(t), b(t) be real-valued, nonnegative, continuous functions

Let spec(A) denote thespectrum ofd € C"*™ (the set of ON J = [to,t1]- _Let k(t,s) be a real-valued, nonnegative,
all eigenvalues of4 ignoring algebraic multiplicity), and let continuous function fot, < s <t <, and suppose
OLHP denote the open left half plane i@ (i.e. OLHP := t
{z € C: Rex < 0}), [7]. The matrix A is calledstableif v(t) < a(t) +b(t) / k(t,s)v(s)ds, teJ.
spec(A) € OLHP; and it is calledsemistablef spec(A4) C fo
OLHP U {0} and, if0 € spec(A), then0 is semisimple (i.e. its
algebraic and geometric multiplicity are identical), [M]he
index of A, denotedIndex A, is the smallest nonnegative
integer j such thatrank A7 = rank A1, [7]. The Darzin
inverseof A is the unique matrixAP satisfyingAAP = AP A, A(t.s) = sup s)
D D _ 4D i+1 AD _ I A 4 — ’ T TEs,t s )
If:lorAj B;%T;Xa”n,dﬁf?nﬁ A.}ﬁjzw(';h _J g;;ﬁ?f’_%g%; ~Lemma 2: C%[ns]ider the solutions (17) and (18) with the ini-
5], w’herel is the identity ;natrix. tial conditionsXy = I andYy = 0. If limy 00 u(—K (o)) =

The following two facts are useful in later derivations; the " then fort >0,

proofs are straightforward and therefore omitted. lim X(¢)=0 and lim Y(¢)=0. (29)

Then

v(t) < a(t) exp (E(t) /t K(t, s) ds> , ted

to

wherea(t) := sup,¢p, g a(7), b(t) := Sup,cpy,,4 0(7), @and

Fact 1: Consider the matrix differential equation e amee _
. Proof: Sincelim, o p(—K(«)) = —o0, there exists an
Z(t)=AZ{t)+BU(t), t >0, Z(0) = Zy, (12) «g € R such that, for alle > ay,
where Z : RT — C™*? continuously differentiablelV : (A — K(a)) < || A1) + (=K (o)) <0, (20)
Rt — C™*? continuous,A € C"*", B € C™™, and 1Ay — K(a)) — || Agl| < —1. (21)
Zy € C™*P, The unique solution of (12) is ] ) o
. In the following, we consider sufficiently large such that
Z(t) = et 7, +/ A=) BU(T) dr. (13) *=Z - _ _ L .
0 Substituting (17) into (18) and using the initial condition

Xo =1 andY, = 0 yields

t
Y(t):/ eA22(t=7) gy e(A—K ()T gr
0

Fact 2: Let A : [a,b] — C™*™ be continuous. Then

H/;A(t) | < /abllA(t)IIdt. (14)

t o7
+// €A22(t_T)A21€(A11_K(a))(T_S)A12Y(S) deT
1. LEMMAS 0/0

t
This section establishes preliminary lemmas and restates :/ eA22(t=7) g, (A —K(a)T gp
two theorems from [4], [5], which are used in Sec. IV to 0 o
prove the main results of this paper. // Az (t=7) g (A =K(@)(T=5) A V() drd
Consider the matrix ordinary differential equation (ODE): + 0Js ¢ 1€ 12¥(s) dr ds,
. (22)
X(t)=(An1—-K X(t)+ ALY (¢ X(0)= Xy, (15
.() (An ()X (1) + 412V (8), ©) o (15 where the order of integration in the last term was inter-
Y(t) = A1 X (1) + AY (1), Y(0)=Yo (16) changed. This is valid by Fubini’s theorem, [11, Prop. 5,36]



and the facts that the integrand is continuous, and the intehere M (t) := ||As ||| Ai2]le!*22It > 0 is a continuous
gration region can be expressed in either of the two wayfsinction in¢. Therefore,

07 <, 0<s<T}or 0<s<t,s<
foosrsttsssmorilng 05 stes [Asslll sz ] g

T < t}. R(t,s) = sup r(1,s) < sup £o)
Using (9), (10), Fact 2, and submultiplicativity of the T€[s:1] T€[s.1]
induced matrix norm, we obtain the inequality _ A Asall jjagype _ Ma(t) 27)
¢(a) (@)
1Y (@)l
t With (26) and (27), we can now bound (25),
< ||A21||/ le22 =Dl =K T dr 4 || Agy ||| Ava| ¢
0 Mi(t) Ma(t)
i WOT="gtay =y ety ®
Az (t—T7) (A11—K(a))(Tt—s)
X/O SHe Ille Y (s)[ dT ds M) . <M2(t)t)
© Al (=) g(Ar—K (@) £(e) ¢(e)
< [ Azl [ el et dr + [| Az [[[| Asz |l M M
0 < 1(t) etMQ(t) _ (t) (28)
t pt - a a)’
x//e||A22H(H)GMAWK(@)(H)Hy(S)HdeS 23) ¢la) £(a)
ofs where M(t) = M;(t)e!™>() > 0 is continuous. Since
limg oo = 00, limy_.o Y () = 0 follows directly from
=alt)+ / Kt )Y (s)ll ds, (24) (121?3)._>Fur€tr(1ae)rmo?§ with (17) a(m)xo .y ’
where IX®)

t
a(t) == HA21H/ el Az [(t=7) gl An ~K (@) g
0

t
S L Rl H T,

t €(0,1]
(t, 5) = || Aza || Ao / ellAzz (=) eulAn =KD (=) g,

t
< entan-x@y 4 el / M(r)dr. (29)
Applying Lemma 1 to (24) yields, for all > 0, £(a) Jo
- t Therefore lim, oo X (t) = 0 for ¢ > 0. [ |
1Y (£)]] < a(t) exp </0 R(t, 5) d3> ; (25)  Lemma 3:Consider the solutions (17) and (18) with the ini-
tial conditions Xy =0 andYy = I. If limgy_y00 pt(— K =
wherea(t) = sup a(t) andk(t,s) = sup k(t,s). 0 0 ma—yo0 (=K (@)
Pre[0,1] A TE[s,t] M oo, then fort > 0,
Next, we derive bounds fod(t), a(t) and x(t,s), k(t, s)
using the properties (20), (21). First, QILH;O X()=0 and Olli_)n;(} Y (t) = ezt (30)
t
a(t) = HA21H3”A22|“/ (A —K(a)=[lAzIDT 4, Proof: The proof is essentially analogous to the proof of
0 Lemma 2.
_ 4] (M2l _ A=Kt ) Let o > ap such that (20) and (21) hold. Substituting (18)
§(a) —_— into (17) and using the initial condition&, = 0 and Yy = I
€(0,1] by (20) . . . S
yields, after interchange of integration in the second term
< Mzl gy _ Mi(®) )
B €(a> §(Oé) ’ X(t) :/ e(AufK(a))(t*T)AlQeAzg'r dr
where¢(a) := || Axl| — p(Ay — K(a)) > 1 by (21), and o
__]I\_{]l(t)f;: Az [|el 4221t > 0 is a continuous function i. Jr// (A=K (@)(t=7) 4 oA (r=3) Ay X (5) dr dis,
erefore, 0Js
A
at) = sup a(r) < sup 122l laaaie and, therefore,
T€[0,t] T€[0,t] f(Oé) ||X(t)H
_ ||A21||€|\A22\|t _ Ml(t>_ (26) ¢
() (@) < [ig] [ enChn =KD A1 g 1 | Ay Aat
Similarly, we obtain a bound fok(¢, s). With s <, tpt
An—K(a))(t—T A T—s8
K(t,s) = HA21H||A12”eHAzzHte—u(Au—K(a))s ></0/S et (A=K (@) (t—=7)  [| A2z |I( )”X(s)”de& (31)
' (1(Ar1—K ()= || Asa|)T Now, consider the substitutions — ¢ — 7 for the first term
X e dr . . .
s in (31) andr — ¢+ s — 7 for the inner integral of the second
_ A2 [ Asa]] (el1A20=) _ gh(Ani—K(@) (=) term, which yields
—
S Zow e Xl
Ao ||| A My (t i
< Lnlldul e _ 30) < [ig] [ eI nenn K" dr | Ay Aat
0



X/7t6||A22|(t—T)eM(All—K(a))(T—S)||X(S)|| drds. (32) 9ive numerical examples in order to illustrate the applidgb
0Js of the different results.

Comparing this inequality to (23), we find that (32) is obtain  If K («) represents a feedback controller gain such as in
from (23) by the substitutiongy (-)|| — | X ()|, [|[Aw2] — (5), equations (37) and (38) describe explicit parameidna

| Ao1|l, and || Aoy || — ||Asz]. Therefore, we can derive anof the controller gain via the scalar tuning parameterl|f
upper bound on| X (¢)| the same way as in the proof ofone seeks to analyze a controller parametrization that tis no

Lemma 2. Corresponding to (28) we get, for alb 0, explicitly given as a function ofy, the log norm condition
L(t) can be useful, as shall be illustrated later in Example 1.
Xt < —=, The specific functional dependencies considered in (37) and
(@) (38) (affine and polynomial) correspond to those that are

where the continuous functiai(t) > 0 is obtained fromM/(¢) also studied in [4], [5] (therein as polynomials irye, cf.
by substituting||A12|| — [|A21]| and|[A21|| — [|As2[|. Thus, Theorem 1 and 2).
limg, 00 X () = 0. Furthermore, with (18) andly = I,

A. Condition Based on the Log Norm &f(«)

A sufficient condition for (2) is the log norm of K («)
Aoy [ 1 Agall (=) becoming arbitrarily small. This result is obtained by ddns
< m/o el 21T L(T) dr. ering the matrix ODE that is solved uniquely by the matrix

exponential (1) and then applying Lemmas 2 and 3 of Sec. IlI.

Therefore, lim, o ||Y(t) — e?22f| = 0, and hence Theorem 3:Let A — (44 ] e cmbmpx(ndm) and let

limg o0 Y (1) = €22, B K :R — C" " be a matrix function of the real parameter
Lemma 2 and 3 are used in the next section to establighyiy,,, . p(—K(a)) = —oo, then (2) holds for alk > 0.

one of the main results of this note (Theorem 3). The other proof: By Fact 1, the matrix exponential

two results (Theorem 4 and 5) presented in the next section

are based on [4], [5], and, in particular on: X(t) := exp ([AH ;1 K(a) ju] t)
Theorem 1 ([4], Theorem 1)tet A, B € C™*". Then 21 22

e(AFB/2) converges pointwise as — 0% for ¢t > 0 if and s the unique solution to the matrix ODE

only if B is semistable. IfB is semistable, then

t
1Y () — eA22t)| < || Auy | / sl =) X ()| dr

A11 - K(CY) Alg
o = > =1.
1i%1+ e(A+B/€)t _ e(I*BB )At([ _ BBD) (33) X(t) |: Aoy Aoy X(t), t>0, X(O) I (39)
E—r
Theorem 2 ([5], Theorem 1)Supposdndex C' = 1 andC’  Note that : R* — C»#m)x(n+m) is continuously differen-
is semistable. Then tiable. By subdividingY'(¢) into block matrices of appropriate

., dimensions,
eATB/etC/ent s (34)

. . X(t) = [Xn(t) Xlg(t)}
converges as — 0" for anr > 2, for all ¢ > 0, if and only if Xop(t) Aoa(t)|”
[B; C] is semistable. Suppog®; C| is semistable. I > 2,
then (34) converges to

AP~ BroPlB o —cPey @[] < [ K Aul i) [du) [

we can write (39) equivalently as

Xgl(t) A21 A22 XQl(t) XQl(O) 0
if » =2, then the limit of (34) is the same as (35), except that (40)
a term {;@12(@] _ {An—fqa) Alﬂ {Xu(t)} {Xu(O)} _ [0]
_[[BCP B; C); [B; Cit 36) [ Aaa(t) An Ap| |An(t)]7 [22(0)] 1]
(41)

is added into the exponential. ] )
Notice that (40) and (41) represent the matrix ODEs con-

sidered in Lemmas 2 and 3, respectively. Using these two

IV. MAIN RESULTS
lemmas, we therefore conclude that, for 0,

This section establishes conditions Af{«) that guarantee

(2). In Sec. IV-A, a sufficient condition is presented that is lim exp <[A11 - K(a) Au} t)

based on the log norm of K (o) (Theorem 3). In Sec. IV-B a—roo A Az

and IV-C, we consider the case whéf(«) has a particular ~ lim [Xu(t) Xlg(t):| B {0 0 ]
polynomial structure; namely T oo | Ao () Aao(t)| T |0 et

K(a) =Ko+ aK; and (37) u
r We illustrate Theorem 3 with the following examples.
= >
K(a) = Ko+ ok +a’ Ky, 722, (38) Example 1 (Discretization and high-gain feedback):
respectively. For the affine case (37), a necessary andisuffic Consider the feedback control example from the introductio
condition is derived (Theorem 4); and for (38), we presentgiven by (3)-(5), and assume a diagonal structure for the
sufficient condition (Theorem 5). Following each theorere, wieedback gaini («) with diagonal element#;(«). Suppose



we are interested in a discrete-time description of theetlos Since —K is stable, B is semistable, and it follows from
loop system (3)—(5) at a ratE > 0. The discretized system Theorem 1 (by substituting/c with «) that

reads _ _o RN .
li (A+aB)t = i (A+B/e)t _ (I-BB")At I — BBD )
w(tHT)] _ o ([An=K(@) Aw] 1) [5(0)] g e 0 € ‘ ( :
xg(t+T) P Aoy Agp ws(t)] ) _ L ) - 71(47)
. o __Since —K; is stable, it is invertible and3® = [ % 0].
Now, assumet;(or) > o, that is, the individual controller gains fence we have
are at least as large as Then, 0 0114 K A
. . . (I-BBP)At _ 11 — 89 12
Jim p(=K(a)) = lim max (- ki(e)) < lim —a=-o00, ¢ - P ({0 I} { Ay Azz} t)

[ehmdee]

(43) 0 0 I 0
and, by Theorem 3, (42) becomes, in the limitcass oo, =P g0 Ap|) T 5 eAmt| (48)
z(t+T) =0 (44)  where the last equality follows from [7, Fact 11.14.2], and
zs(t 4+ T) = 2T gg(t) ; (45) is a placeholder left unspecified. Therefore, we get from) (47
that is, the slow and fast dynamics are decoupled. lim e(A+eB)t _ 6(FJ_EH?D)M(I — BBP) (49)
In [1] and [3, p. 65], Theorem 3 is applied to control systems >
that are more general than (3)—(5), where, in particula, th — [I AQ t} [O 0} — {O AO t] . (50)
controller (5) is modified to track a reference input chaggin « et 0T 0 e

at the ratel’. The obtained discrete-time model of the contrajhich completes the sufficiency part of the proof.

system is then used to design an outer-loop controller thatror the necessity proof, assume (2) holds. First notice that
commands the reference input to the modified controller (§r the limit limy_, oo eA+2B)t = lim__, o+ e(A+B/9)1 to exist,
which then acts as the inner-loop controller of the cascadgdgliows from Theorem 1 thatB is semistable. From the

control system. _ _ _ definition of B in (46), it can be seen that this implies that
Remark 1:Note that the functionk(a) is not given ex- _ | is semistable, which further implies that

plicitly in Example 1. The estimaté;(«) > « with the

diagonal structure of<(«) is enough to verify the condition spec(— K1) C OLHP U {0}. (51)

of Theorem 3. In contrast, the convergence results in SeB. IV

and IV-C require an explicit description df ().
Example 2:Consider (1) with

From B being semistable and Theorem 1, it follows that
(47) holds. Hence, the limit in (47) is equal to the limit in:(2

0 070 o o I=BENAN (] — BBP) = [8 Aom} NGy
A=1]0 0|1 ,K(a)z[o a},andtzl. ¢
0 01]0 Now, let
Notice that—K () is stable for alla > 0 (both eigenvalues E= En ?2} = eU=BB%At, (53)
are —a), and that both eigenvalues go to negative infinity as .

P B}‘t ;ima—m p(=K(e)) = limg oo max{—a +  yging BP = [~K7 0] and (53), it follows from (52) (by
3%, —a — 5a°} = oo, and the limit of (1) fora — oo considering the first block column) that
is (can be computed using [7, Fact 11.14.2])

En py_ |0

|:E21:| (I — K KP) = M : (54)

0 0]—-1

000 |,
{ 0 0| 1 ] Since the matrix exponential is nonsingular [7, Prop. Bl,2.
E in (53) is nonsingular, and /%! | has full column rank.

which is clearly different from (2) in the (1,2)-block. S Bt D
Remark 2: The preceding example shows that it does ngperefore, (54) implies/ — K, Ky) = 0 « Ky K7 = 1. From

, : is and the rank formula [7, Lemma 2.5.2]= rank(I) =
rs]l;g:t?v;oirn%?ig) hold that the eigenvalues of¢(«) tend to rank(K; KP) < min{rank(K),rank(KP)} < n, it follows

that K, has full rank. Thus, alse-K; has full rank, which
i implies 0 ¢ spec(—K3), [7, Cor. 2.6.6, Prop. 5.5.20]. This
B. K(a) Affine and (51) implyspec(—K;) € OLHP, i.e. — K is stable. &
We study the limit of (1) with affine/{(a) as in (37). The  Example 3:Consider
following result provides a necessary and sufficient caoolit
for (2). It is obtained using Theorem 1. K(a)=aK;, with K; = 12 .
. _ [A1n1 A2 (m+n)x (m+n) 0 1
Theorem 4:Let A = [4!' 2] € C , and let
K(a) = Ko + aK; with Ko, K1 € C"*" anda € R. Then, Then— K is stable, and, by Theorem 4, (2) holds for aty
(2) holds fort > 0 if and only if —K is stable. Remark 3:For K(a) as in Example 3, we compute
Proof: We first prove sufficiency. Let limg oo p(—K () = limg_,s max{0, —2a} = 0. Exam-
i A — Ky Aj - [-Ki 0 ple 3 hence shgyvs that the condition in Theorem 3 is not a
Aoy Aoy | B = 0o ol (46) necessary condition.



C. K(«) Polynomial V. CONCLUDING REMARKS

We study the limit of (1) withK(«) as in (38); that is, The three theorems presented in this technical note guar-
compared to (37),K(«) possesses an additional powe? antee the limiting property (2) of the matrix exponentia); (1
with = > 2. A sufficient condition for convergence is derivedessentially, a “large enougt® («) in the (1,1)-block forces all
using Theorem 2. The condition is different from the suffitie but the (2,2)-block of the matrix exponential to tend to ziero
condition in Theorem 3 (one does not imply the other) as sh#ile limit. Theorem 3 states a sufficient condition for (2)dzhs
be pointed out later. on the log norm of— K («), and Theorems 4 and 5 provide

Theorem 5:Let A = [41! 4] € C(mFmx(m+n) and let sufficient conditions fork () having a particular polynomial
K(a) = Ko + oK + o" Ky with Ko, K1, K, € C™™ and  form. For the affine case (Theorem 4), the obtained condition

a,r € R, r > 2. If —K, is stable, then (2) holds far> 0. is also necessary.

Proof: Let A, B be as in (46), and le€’ := [~/ 0]. Theorems 4 and 5 herein are obtained using the results
Since— K3 is stableC is semistable. Furthermorkydex C' = by Campbell et al. [4], [5]. Theorem 3, however, is obtained
1 sincerank(K3) = rank(—K,) (—K> has full rank). Thus, independently of those results. Its method of proof is based
the assumptions of Theorem 2 are satisfied. on the matrix differential equation that is solved uniqubly

With CP = [*gz’l 8} we get(I — CPC) = [§9] and the matrix exponential (1), and on bounding its solutiomgsi
[B;C] = (I — CPC)B(I — CPC) = 0, which is semistable. a Gronwall-type inequality. In contrast, Campbell et al kena
Therefore, by Theorem 2 lim, . eATeB+a"C)t  —  use of Cauchy’s integral formula to prove their result in, [4]

lim, g+ e(A+B/=+C/<)t converges to the limit specified byfor example.
(35) and (36) whered, B, C are replaced byd, B, C. We The numerical examples herein were chosen to highlight

next compute the expressions (35) and (36). specific mathematical properties of the results. The Iigiti
From [B;C] = 0, we get(I — [B; C]P[B;C]) = I —0P0 = property of the matrix exponential has been applied to jwaict
I. Furthermore, examples in [1] (an inverted pendulum) and [3] (a balancing

o 0 01 T4 — K+ A 0 0 0 0 cube). Therein, Theorem 3 is used to derive a time-scale
[A4:CT = {0 I] [ 11/121 0 A;j [0 I] = [0 AQJ, separation algorithm that computes a discrete-time model

representing the plant dynamics under high-gain feedback o

and, hence, some of the plant’s states. This model is then used to design
i AN 1R A i A 0 0 a stabilizing outer-loop controller.
lickEa=Lac= ) 0. 9 g outer-loop
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Remark 4:Examples 4 and 5 show that there are problems
with K (a) = Ko+ aK; + " K5 which are covered by Theo-
rem 3, but not by Theorem 5; and vice versa. In general, both
theorems provide sufficient conditions for different peshl
classes.



