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Abstract—A limiting property of the matrix exponential is
proven: if the (1,1)-block of a 2-by-2 block matrix becomes
“arbitrarily small” in a limiting process, the matrix exponential
of that matrix tends to zero in the (1,1)-, (1,2)-, and (2,1)-blocks.
The limiting process is such that either the log norm of the
(1,1)-block goes to negative infinity, or, for a certain polynomial
dependency, the matrix associated with the largest power of the
variable that tends to infinity is stable. The limiting property is
useful for simplification of dynamic systems that exhibit modes
with sufficiently different time scales. The obtained limit then
implies the decoupling of the corresponding dynamics.

Index Terms—Matrix exponential, limiting property, logarith-
mic norm, time-scale separation.

I. I NTRODUCTION

The subject of study in this paper is the matrix exponential

exp

([
A11 −K(α) A12

A21 A22

]

t

)

, t > 0, (1)

in the limit asK(α) grows large forα → ∞ in some sense to
be made precise later. All matrices are complex, andα is a real
parameter. For different classes ofK(α), we derive sufficient
(and in one case also necessary) conditions onK(α) such that,
for all t > 0,

lim
α→∞

exp

([
A11−K(α) A12

A21 A22

]

t

)

=

[
0 0
0 eA22t

]

. (2)

That is, we are interested in conditions guaranteeing that the
coupling blocks (1,2) and (2,1) vanish (in addition to the (1,1)-
block).

In addition to being an interesting matrix problem, the result
can be applied to control systems that exhibit significantly
different time scales, such as systems with high-gain feedback
on some states. For example, consider the system

ẋf(t) = A11xf(t) +A12xs(t) + u(t) (3)

ẋs(t) = A21xf(t) +A22xs(t), (4)

with static feedback on the statesxf(t) (index f for “fast” and
s for “slow”),

u(t) = −K(α)xf(t). (5)

The matrix functionK(α) then represents the feedback gain
parametrized byα. The feedback system is depicted in Fig. 1.
A more general multi-loop feedback system with additional
reference inputs is considered in [1].

The matrix exponential (1) is a fundamental matrix (see
e.g. [2]) of the feedback system (3)–(5). The limit (2) means
that the dynamics ofxf(t) andxs(t) are decoupled in the limit
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Fig. 1. Linear system with feedback on the first part of the state vector, the
“fast” statesxf .

as K(α) grows large. In this context, we seek to determine
what type of feedback yields a decoupling of the states in
feedback from the remaining ones in the limit as the feedback
gains become arbitrarily large.

This question is of interest, for example, when designing
multi-loop control systems with high-gain inner loops, since
a decoupling of the states allows for a simplified system
description and, hence, a simplified control design. The matrix
result herein is applied in [1] to derive a time-scale separation
algorithm for a cascaded control system with high-gain inner
feedback loops. The algorithm yields a system description that
includes the plant dynamics and the effect of the inner feed-
back loops. The obtained representation is useful, for example,
for designing an outer-loop controller. This methodology is
applied in the design of a cascaded feedback control system
for an inverted pendulum in [1] and for a balancing cube (a
multi-body 3-D inverted pendulum) in [3].

Related to the problem studied herein is the work by
Campbell et al., [4], [5]. The authors consider the matrix
exponential with its argument being a polynomial in1/ε and
derive conditions for its convergence in the limit asε → 0+.
In [4], for example, Campbell et al. present a necessary and
sufficient condition for pointwise convergence of

exp((A+B/ε)t), t > 0, (6)

as ε → 0+. While they are interested in general convergence
to somelimit, we seek conditions that yield theparticular limit
(2); that is, where the cross coupling blocks (1,2) and (2,1)
vanish.

Before deriving the technical results, this article continues
with notation and preliminaries in Sec. II. In Sec. III, we
establish lemmas and cite theorems that are required for the
development of the main results, which follows in Sec. IV.
The main results are three different conditions onK(α) that
guarantee (2): a sufficient condition that is based on the log
norm (defined in (8) of the next section) of−K(α) and that
makes no prior assumption on the function type ofK(α)
(Theorem 3); a necessary and sufficient condition for the
case whenK(α) is affine (Theorem 4); and another sufficient
condition for the case whenK(α) has an affine term and
an additional polynomial termαr, r ≥ 2 (Theorem 5). The
latter two results are based on [4], [5], while the first one
is established independently of those. Numerical examples
illustrating the applicability of the different theorems are given
throughout in Sec. IV. The article concludes with remarks in
Sec. V.

A preliminary version of Theorem 3 was first published in
[1].
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II. N OTATION AND PRELIMINARIES

We useR, C, and R
+ to denote real numbers, complex

numbers, and nonnegative real numbers, respectively. For the
derivations in the paper, we work exclusively with the vector
2-norm and its induced matrix norm; that is, forx ∈ C

n and
A ∈ C

p×n,

‖x‖ =
(∑n

i=1
|xi|

2
)1/2

, ‖A‖ = max
‖x‖=1

‖Ax‖. (7)

For A ∈ C
n×n, µ(A) denotes thelog normof A, [6]–[8]:

µ(A) := max{µ|µan eigenvalue of(A+A∗)/2}, (8)

whereA∗ is the conjugate transpose ofA. We shall exploit
the following properties ofµ(A), [6]–[8]:

‖eAt‖ ≤ eµ(A)t (9)

µ(A) ≤ ‖A‖ (10)

µ(A+B) ≤ µ(A) + ‖B‖, (11)

whereA,B ∈ C
n×n and t ∈ R

+.
Let spec(A) denote thespectrum ofA ∈ C

n×n (the set of
all eigenvalues ofA ignoring algebraic multiplicity), and let
OLHP denote the open left half plane inC (i.e. OLHP :=
{x ∈ C : Rex < 0}), [7]. The matrixA is called stable if
spec(A) ⊂ OLHP; and it is calledsemistableif spec(A) ⊂
OLHP∪{0} and, if0 ∈ spec(A), then0 is semisimple (i.e. its
algebraic and geometric multiplicity are identical), [7].The
index of A, denotedIndexA, is the smallest nonnegative
integer j such thatrankAj = rankAj+1, [7]. The Darzin
inverseof A is the unique matrixAD satisfyingAAD = ADA,
ADAAD = AD, andAj+1AD = Aj with j = IndexA, [7], [9].
For A,B ∈ C

n×n, define[A;B] := (I −BDB)A(I −BDB),
[5], whereI is the identity matrix.

The following two facts are useful in later derivations; the
proofs are straightforward and therefore omitted.

Fact 1: Consider the matrix differential equation

Ż(t) = AZ(t) +B U(t), t ≥ 0, Z(0) = Z0, (12)

where Z : R
+ → C

n×p continuously differentiable,U :
R

+ → C
m×p continuous,A ∈ C

n×n, B ∈ C
n×m, and

Z0 ∈ C
n×p. The unique solution of (12) is

Z(t) = eAtZ0 +

∫ t

0

eA(t−τ) B U(τ) dτ. (13)

Fact 2: Let A : [a, b] → C
n×m be continuous. Then

∥
∥
∥

∫ b

a

A(t) dt
∥
∥
∥ ≤

∫ b

a

‖A(t)‖ dt. (14)

III. L EMMAS

This section establishes preliminary lemmas and restates
two theorems from [4], [5], which are used in Sec. IV to
prove the main results of this paper.

Consider the matrix ordinary differential equation (ODE):

Ẋ(t) = (A11−K(α))X(t) +A12Y (t), X(0) = X0 (15)

Ẏ (t) = A21X(t) +A22Y (t), Y (0) = Y0 (16)

with X : R+ → C
n×p and Y : R+ → C

m×p continuously
differentiable, and complex matricesA11, A12, A21, A22,
K(α), X0, andY0 of appropriate dimensions. Notice that the
matrix exponential (1) is a fundamental matrix of the ODE
system given by (15) and (16), which is why the study of
(15), (16) will be useful in the later development.

By Fact 1, the unique solutions to (15) and (16) (considered
individually) are, for allt ≥ 0,

X(t) = e(A11−K(α))tX0 +

∫ t

0

e(A11−K(α))(t−τ)A12Y (τ) dτ

(17)

Y (t) = eA22tY0 +

∫ t

0

eA22(t−τ)A21X(τ) dτ. (18)

Lemmas 2 and 3 below treat the solutions (17) and (18)
for different initial conditions in the limit as the log norm
of −K(α) tends to negative infinity. To establish these two
lemmas, the following Gronwall-type inequality is used:

Lemma 1 (adapted from [10], Theorem 1.9):Let v(t),
a(t), b(t) be real-valued, nonnegative, continuous functions
on J = [t0, t1]. Let κ(t, s) be a real-valued, nonnegative,
continuous function fort0 ≤ s ≤ t ≤ t1, and suppose

v(t) ≤ a(t) + b(t)

∫ t

t0

κ(t, s)v(s) ds, t ∈ J.

Then

v(t) ≤ ā(t) exp

(

b̄(t)

∫ t

t0

κ̄(t, s) ds

)

, t ∈ J,

where ā(t) := supτ∈[t0,t] a(τ), b̄(t) := supτ∈[t0,t] b(τ), and
κ̄(t, s) := supτ∈[s,t] κ(τ, s).

Lemma 2:Consider the solutions (17) and (18) with the ini-
tial conditionsX0 = I andY0 = 0. If limα→∞ µ(−K(α)) =
−∞, then fort > 0,

lim
α→∞

X(t) = 0 and lim
α→∞

Y (t) = 0. (19)

Proof: Sincelimα→∞ µ(−K(α)) = −∞, there exists an
α0 ∈ R such that, for allα ≥ α0,

µ(A11 −K(α)) ≤ ‖A11‖+ µ(−K(α)) < 0, (20)

µ(A11 −K(α))− ‖A22‖ < −1. (21)

In the following, we consider sufficiently largeα such that
α ≥ α0.

Substituting (17) into (18) and using the initial conditions
X0 = I andY0 = 0 yields

Y (t) =

∫ t

0

eA22(t−τ)A21e
(A11−K(α))τ dτ

+

∫ t

0

∫ τ

0

eA22(t−τ)A21e
(A11−K(α))(τ−s)A12Y (s) ds dτ

=

∫ t

0

eA22(t−τ)A21e
(A11−K(α))τ dτ

+

∫ t

0

∫ t

s

eA22(t−τ)A21e
(A11−K(α))(τ−s)A12Y (s) dτ ds,

(22)

where the order of integration in the last term was inter-
changed. This is valid by Fubini’s theorem, [11, Prop. 5.36],



and the facts that the integrand is continuous, and the inte-
gration region can be expressed in either of the two ways:
{(τ, s) : 0 ≤ τ ≤ t, 0 ≤ s ≤ τ} or {(τ, s) : 0 ≤ s ≤ t, s ≤
τ ≤ t}.

Using (9), (10), Fact 2, and submultiplicativity of the
induced matrix norm, we obtain the inequality

‖Y (t)‖

≤ ‖A21‖

∫ t

0

‖eA22(t−τ)‖‖e(A11−K(α))τ‖ dτ + ‖A21‖‖A12‖

×

∫ t

0

∫ t

s

‖eA22(t−τ)‖‖e(A11−K(α))(τ−s)‖‖Y (s)‖ dτ ds

≤ ‖A21‖

∫ t

0

e‖A22‖(t−τ)eµ(A11−K(α))τ dτ + ‖A21‖‖A12‖

×

∫ t

0

∫ t

s

e‖A22‖(t−τ)eµ(A11−K(α))(τ−s)‖Y (s)‖ dτ ds (23)

= a(t) +

∫ t

0

κ(t, s)‖Y (s)‖ ds, (24)

where

a(t) := ‖A21‖

∫ t

0

e‖A22‖(t−τ)eµ(A11−K(α))τ dτ,

κ(t, s) := ‖A21‖‖A12‖

∫ t

s

e‖A22‖(t−τ)eµ(A11−K(α))(τ−s) dτ.

Applying Lemma 1 to (24) yields, for allt ≥ 0,

‖Y (t)‖ ≤ ā(t) exp

(∫ t

0

κ̄(t, s) ds

)

, (25)

whereā(t) = supτ∈[0,t] a(τ) and κ̄(t, s) = supτ∈[s,t] κ(τ, s).
Next, we derive bounds fora(t), ā(t) and κ(t, s), κ̄(t, s)

using the properties (20), (21). First,

a(t) = ‖A21‖e
‖A22‖t

∫ t

0

e(µ(A11−K(α))−‖A22‖)τ dτ

=
‖A21‖

ξ(α)

(
e‖A22‖t − eµ(A11−K(α))t

︸ ︷︷ ︸

∈(0,1] by (20)

)

≤
‖A21‖

ξ(α)
e‖A22‖t =

M1(t)

ξ(α)
,

where ξ(α) := ‖A22‖ − µ(A11 − K(α)) > 1 by (21), and
M1(t) := ‖A21‖e

‖A22‖t ≥ 0 is a continuous function int.
Therefore,

ā(t) = sup
τ∈[0,t]

a(τ) ≤ sup
τ∈[0,t]

‖A21‖

ξ(α)
e‖A22‖τ

=
‖A21‖

ξ(α)
e‖A22‖t =

M1(t)

ξ(α)
. (26)

Similarly, we obtain a bound forκ(t, s). With s ≤ t,

κ(t, s) = ‖A21‖‖A12‖e
‖A22‖te−µ(A11−K(α))s

×

∫ t

s

e(µ(A11−K(α))−‖A22‖)τ dτ

=
‖A21‖‖A12‖

ξ(α)

(
e‖A22‖(t−s) − eµ(A11−K(α))(t−s)

︸ ︷︷ ︸

∈(0,1] by (20)

)

≤
‖A21‖‖A12‖

ξ(α)
e‖A22‖t =

M2(t)

ξ(α)
,

where M2(t) := ‖A21‖‖A12‖e
‖A22‖t ≥ 0 is a continuous

function in t. Therefore,

κ̄(t, s) = sup
τ∈[s,t]

κ(τ, s) ≤ sup
τ∈[s,t]

‖A21‖‖A12‖

ξ(α)
e‖A22‖τ

=
‖A21‖‖A12‖

ξ(α)
e‖A22‖t =

M2(t)

ξ(α)
. (27)

With (26) and (27), we can now bound (25),

‖Y (t)‖ ≤
M1(t)

ξ(α)
exp

(∫ t

0

M2(t)

ξ(α)
ds

)

=
M1(t)

ξ(α)
exp

(
M2(t)

ξ(α)
t

)

≤
M1(t)

ξ(α)
etM2(t) =

M(t)

ξ(α)
, (28)

where M(t) := M1(t)e
tM2(t) ≥ 0 is continuous. Since

limα→∞ ξ(α) = ∞, limα→∞ Y (t) = 0 follows directly from
(28). Furthermore, with (17) andX0 = I,

‖X(t)‖

≤ eµ(A11−K(α))t + ‖A12‖

∫ t

0

eµ(A11−K(α))(t−τ)
︸ ︷︷ ︸

∈(0,1]

‖Y (τ)‖ dτ

≤ eµ(A11−K(α))t +
‖A12‖

ξ(α)

∫ t

0

M(τ) dτ. (29)

Therefore,limα→∞ X(t) = 0 for t > 0.
Lemma 3:Consider the solutions (17) and (18) with the ini-

tial conditionsX0 = 0 andY0 = I. If limα→∞ µ(−K(α)) =
−∞, then fort > 0,

lim
α→∞

X(t) = 0 and lim
α→∞

Y (t) = eA22t. (30)

Proof: The proof is essentially analogous to the proof of
Lemma 2.

Let α ≥ α0 such that (20) and (21) hold. Substituting (18)
into (17) and using the initial conditionsX0 = 0 andY0 = I
yields, after interchange of integration in the second term,

X(t) =

∫ t

0

e(A11−K(α))(t−τ)A12e
A22τ dτ

+

∫ t

0

∫ t

s

e(A11−K(α))(t−τ)A12e
A22(τ−s)A21X(s) dτ ds,

and, therefore,

‖X(t)‖

≤ ‖A12‖

∫ t

0

eµ(A11−K(α))(t−τ)e‖A22‖τ dτ + ‖A12‖‖A21‖

×

∫ t

0

∫ t

s

eµ(A11−K(α))(t−τ)e‖A22‖(τ−s)‖X(s)‖ dτ ds. (31)

Now, consider the substitutionsτ → t − τ for the first term
in (31) andτ → t+ s− τ for the inner integral of the second
term, which yields

‖X(t)‖

≤ ‖A12‖

∫ t

0

e‖A22‖(t−τ)eµ(A11−K(α))τ dτ + ‖A12‖‖A21‖



×

∫ t

0

∫ t

s

e‖A22‖(t−τ)eµ(A11−K(α))(τ−s)‖X(s)‖ dτ ds. (32)

Comparing this inequality to (23), we find that (32) is obtained
from (23) by the substitutions‖Y (·)‖ → ‖X(·)‖, ‖A12‖ →
‖A21‖, and ‖A21‖ → ‖A12‖. Therefore, we can derive an
upper bound on‖X(t)‖ the same way as in the proof of
Lemma 2. Corresponding to (28) we get, for allt ≥ 0,

‖X(t)‖ ≤
L(t)

ξ(α)
,

where the continuous functionL(t) ≥ 0 is obtained fromM(t)
by substituting‖A12‖ → ‖A21‖ and ‖A21‖ → ‖A12‖. Thus,
limα→∞ X(t) = 0. Furthermore, with (18) andY0 = I,

‖Y (t)− eA22t‖ ≤ ‖A21‖

∫ t

0

e‖A22‖(t−τ)‖X(τ)‖ dτ

≤
‖A21‖

ξ(α)

∫ t

0

e‖A22‖(t−τ)L(τ) dτ.

Therefore, limα→∞‖Y (t) − eA22t‖ = 0, and hence
limα→∞ Y (t) = eA22t.

Lemma 2 and 3 are used in the next section to establish
one of the main results of this note (Theorem 3). The other
two results (Theorem 4 and 5) presented in the next section
are based on [4], [5], and, in particular on:

Theorem 1 ([4], Theorem 1):Let A,B ∈ C
n×n. Then

e(A+B/ε)t converges pointwise asε → 0+ for t > 0 if and
only if B is semistable. IfB is semistable, then

lim
ε→0+

e(A+B/ε)t = e(I−BBD)At(I −BBD). (33)

Theorem 2 ([5], Theorem 1):SupposeIndexC = 1 andC
is semistable. Then

e(A+B/ε+C/εr)t, r > 1, (34)

converges asε → 0+ for anr ≥ 2, for all t > 0, if and only if
[B;C] is semistable. Suppose[B;C] is semistable. Ifr > 2,
then (34) converges to

e[[A;C];[B;C]]t(I − [B;C]D[B;C])(I − CDC); (35)

if r = 2, then the limit of (34) is the same as (35), except that
a term

−[[BCDB;C]; [B;C]]t (36)

is added into the exponential.

IV. M AIN RESULTS

This section establishes conditions onK(α) that guarantee
(2). In Sec. IV-A, a sufficient condition is presented that is
based on the log norm of−K(α) (Theorem 3). In Sec. IV-B
and IV-C, we consider the case whenK(α) has a particular
polynomial structure; namely

K(α) = K0 + αK1 and (37)

K(α) = K0 + αK1 + αrK2, r ≥ 2, (38)

respectively. For the affine case (37), a necessary and sufficient
condition is derived (Theorem 4); and for (38), we present a
sufficient condition (Theorem 5). Following each theorem, we

give numerical examples in order to illustrate the applicability
of the different results.

If K(α) represents a feedback controller gain such as in
(5), equations (37) and (38) describe explicit parametrizations
of the controller gain via the scalar tuning parameterα. If
one seeks to analyze a controller parametrization that is not
explicitly given as a function ofα, the log norm condition
can be useful, as shall be illustrated later in Example 1.
The specific functional dependencies considered in (37) and
(38) (affine and polynomial) correspond to those that are
also studied in [4], [5] (therein as polynomials in1/ε, cf.
Theorem 1 and 2).

A. Condition Based on the Log Norm ofK(α)

A sufficient condition for (2) is the log norm of−K(α)
becoming arbitrarily small. This result is obtained by consid-
ering the matrix ODE that is solved uniquely by the matrix
exponential (1) and then applying Lemmas 2 and 3 of Sec. III.

Theorem 3:Let A =
[
A11 A12

A21 A22

]
∈ C

(n+m)×(n+m), and let
K : R → C

n×n be a matrix function of the real parameterα.
If limα→∞ µ(−K(α)) = −∞, then (2) holds for allt > 0.

Proof: By Fact 1, the matrix exponential

X (t) := exp

([
A11 −K(α) A12

A21 A22

]

t

)

is the unique solution to the matrix ODE

Ẋ (t) =

[
A11 −K(α) A12

A21 A22

]

X (t), t ≥ 0, X (0) = I. (39)

Note thatX : R+ → C
(n+m)×(n+m) is continuously differen-

tiable. By subdividingX (t) into block matrices of appropriate
dimensions,

X (t) =

[
X11(t) X12(t)
X21(t) X22(t)

]

,

we can write (39) equivalently as
[
Ẋ11(t)

Ẋ21(t)

]

=

[
A11−K(α) A12

A21 A22

] [
X11(t)
X21(t)

]

,

[
X11(0)
X21(0)

]

=

[
I
0

]

,

(40)
[
Ẋ12(t)

Ẋ22(t)

]

=

[
A11−K(α) A12

A21 A22

] [
X12(t)
X22(t)

]

,

[
X12(0)
X22(0)

]

=

[
0
I

]

.

(41)

Notice that (40) and (41) represent the matrix ODEs con-
sidered in Lemmas 2 and 3, respectively. Using these two
lemmas, we therefore conclude that, fort > 0,

lim
α→∞

exp

([
A11 −K(α) A12

A21 A22

]

t

)

= lim
α→∞

[
X11(t) X12(t)
X21(t) X22(t)

]

=

[
0 0
0 eA22t

]

.

We illustrate Theorem 3 with the following examples.
Example 1 (Discretization and high-gain feedback):

Consider the feedback control example from the introduction
given by (3)–(5), and assume a diagonal structure for the
feedback gainK(α) with diagonal elementski(α). Suppose



we are interested in a discrete-time description of the closed-
loop system (3)–(5) at a rateT > 0. The discretized system
reads
[
xf(t+T )
xs(t+T )

]

= exp

([
A11−K(α) A12

A21 A22

]

T

)[
xf(t)
xs(t)

]

. (42)

Now, assumeki(α) ≥ α, that is, the individual controller gains
are at least as large asα. Then,

lim
α→∞

µ(−K(α)) = lim
α→∞

max
i

(
− ki(α)

)
≤ lim

α→∞
−α = −∞,

(43)
and, by Theorem 3, (42) becomes, in the limit asα→∞,

xf(t+ T ) = 0 (44)

xs(t+ T ) = eA22Txs(t) ; (45)

that is, the slow and fast dynamics are decoupled.
In [1] and [3, p. 65], Theorem 3 is applied to control systems

that are more general than (3)–(5), where, in particular, the
controller (5) is modified to track a reference input changing
at the rateT . The obtained discrete-time model of the control
system is then used to design an outer-loop controller that
commands the reference input to the modified controller (5),
which then acts as the inner-loop controller of the cascaded
control system.

Remark 1:Note that the functionK(α) is not given ex-
plicitly in Example 1. The estimateki(α) ≥ α with the
diagonal structure ofK(α) is enough to verify the condition
of Theorem 3. In contrast, the convergence results in Sec. IV-B
and IV-C require an explicit description ofK(α).

Example 2:Consider (1) with

A =





0 0 0
0 0 1
0 0 0



, K(α) =

[
α α2

0 α

]

, and t = 1.

Notice that−K(α) is stable for allα > 0 (both eigenvalues
are−α), and that both eigenvalues go to negative infinity as
α → ∞. But limα→∞ µ(−K(α)) = limα→∞ max{−α +
1
2α

2,−α − 1
2α

2} = ∞, and the limit of (1) forα → ∞
is (can be computed using [7, Fact 11.14.2])





0 0 −1
0 0 0
0 0 1



,

which is clearly different from (2) in the (1,2)-block.
Remark 2:The preceding example shows that it does not

suffice for (2) to hold that the eigenvalues of−K(α) tend to
negative infinity.

B. K(α) Affine

We study the limit of (1) with affineK(α) as in (37). The
following result provides a necessary and sufficient condition
for (2). It is obtained using Theorem 1.

Theorem 4:Let A =
[
A11 A12

A21 A22

]
∈ C

(m+n)×(m+n), and let
K(α) = K0 + αK1 with K0,K1 ∈ C

n×n andα ∈ R. Then,
(2) holds fort > 0 if and only if −K1 is stable.

Proof: We first prove sufficiency. Let

Ã :=

[
A11 −K0 A12

A21 A22

]

, B̃ :=

[
−K1 0
0 0

]

. (46)

Since −K1 is stable,B̃ is semistable, and it follows from
Theorem 1 (by substituting1/ε with α) that

lim
α→∞

e(Ã+αB̃)t = lim
ε→0+

e(Ã+B̃/ε)t = e(I−B̃B̃D)Ãt(I − B̃B̃D).

(47)
Since−K1 is stable, it is invertible and̃BD =

[
−K−1

1
0

0 0

]
.

Hence, we have

e(I−B̃B̃D)Ãt = exp

([
0 0
0 I

] [
A11 −K0 A12

A21 A22

]

t

)

= exp

([
0 0

A21 A22

]

t

)

=

[
I 0
∗ eA22t

]

, (48)

where the last equality follows from [7, Fact 11.14.2], and∗
is a placeholder left unspecified. Therefore, we get from (47)

lim
α→∞

e(Ã+αB̃)t = e(I−B̃B̃D)Ãt(I − B̃B̃D) (49)

=

[
I 0
∗ eA22t

] [
0 0
0 I

]

=

[
0 0
0 eA22t

]

, (50)

which completes the sufficiency part of the proof.
For the necessity proof, assume (2) holds. First notice that,

for the limit limα→∞ e(Ã+αB̃)t = limε→0+ e(Ã+B̃/ε)t to exist,
it follows from Theorem 1 thatB̃ is semistable. From the
definition of B̃ in (46), it can be seen that this implies that
−K1 is semistable, which further implies that

spec(−K1) ⊂ OLHP∪{0}. (51)

From B̃ being semistable and Theorem 1, it follows that
(47) holds. Hence, the limit in (47) is equal to the limit in (2):

e(I−B̃B̃D)Ãt(I − B̃B̃D) =

[
0 0
0 eA22t

]

. (52)

Now, let

E =

[
E11 E12

E21 E22

]

:= e(I−B̃B̃D)Ãt. (53)

Using B̃D =
[
−KD

1 0
0 0

]
and (53), it follows from (52) (by

considering the first block column) that
[
E11

E21

]

(I −K1K
D
1 ) =

[
0
0

]

. (54)

Since the matrix exponential is nonsingular [7, Prop. 11.2.8],
E in (53) is nonsingular, and

[
E11

E21

]
has full column rank.

Therefore, (54) implies(I−K1K
D
1 ) = 0 ⇔ K1K

D
1 = I. From

this and the rank formula [7, Lemma 2.5.2]n = rank(I) =
rank(K1K

D
1 ) ≤ min{rank(K1), rank(K

D
1 )} ≤ n, it follows

that K1 has full rank. Thus, also−K1 has full rank, which
implies 0 /∈ spec(−K1), [7, Cor. 2.6.6, Prop. 5.5.20]. This
and (51) implyspec(−K1) ⊂ OLHP, i.e. −K1 is stable.

Example 3:Consider

K(α) = αK1 with K1 =

[
1 2
0 1

]

.

Then−K1 is stable, and, by Theorem 4, (2) holds for anyA.
Remark 3:For K(α) as in Example 3, we compute

limα→∞ µ(−K(α)) = limα→∞ max{0,−2α} = 0. Exam-
ple 3 hence shows that the condition in Theorem 3 is not a
necessary condition.



C. K(α) Polynomial

We study the limit of (1) withK(α) as in (38); that is,
compared to (37),K(α) possesses an additional powerαr

with r ≥ 2. A sufficient condition for convergence is derived
using Theorem 2. The condition is different from the sufficient
condition in Theorem 3 (one does not imply the other) as shall
be pointed out later.

Theorem 5:Let A =
[
A11 A12

A21 A22

]
∈ C

(m+n)×(m+n), and let
K(α) = K0 + αK1 + αrK2 with K0,K1,K2 ∈ C

n×n and
α, r ∈ R, r ≥ 2. If −K2 is stable, then (2) holds fort > 0.

Proof: Let Ã, B̃ be as in (46), and let̃C :=
[
−K2 0
0 0

]
.

Since−K2 is stable,C̃ is semistable. Furthermore,Index C̃ =
1 sincerank(K2

2 ) = rank(−K2) (−K2 has full rank). Thus,
the assumptions of Theorem 2 are satisfied.

With C̃D =
[
−K−1

2
0

0 0

]
, we get (I − C̃DC̃) = [ 0 0

0 I ] and

[B̃; C̃] = (I − C̃DC̃)B̃(I − C̃DC̃) = 0, which is semistable.
Therefore, by Theorem 2,limα→∞ e(Ã+αB̃+αrC̃)t =
limε→0+ e(Ã+B̃/ε+C̃/εr)t converges to the limit specified by
(35) and (36) whereA, B, C are replaced byÃ, B̃, C̃. We
next compute the expressions (35) and (36).

From [B̃; C̃] = 0, we get(I − [B̃; C̃]D[B̃; C̃]) = I − 0D0 =
I. Furthermore,

[Ã; C̃] =

[
0 0
0 I

] [
A11 −K0 A12

A21 A22

] [
0 0
0 I

]

=

[
0 0
0 A22

]

,

and, hence,

[[Ã; C̃]; [B̃; C̃]] = [Ã; C̃] =

[
0 0
0 A22

]

. (55)

Using these results, expression (35) yields the desired limit in
(2),

e[[Ã;C̃];[B̃;C̃]]t(I − [B̃; C̃]D[B̃; C̃])(I − C̃DC̃) =

[
0 0
0 eA22t

]

.

Since

[B̃C̃DB̃; C̃] =

[
0 0
0 I

] [
−K1K

−1
2 K1 0
0 0

] [
0 0
0 I

]

= 0,

expression (36) is 0.
Example 4:Consider

K(α) = −αI + α2K2 with K2 =

[
0.1 1
0 0.1

]

.

Then −K2 is stable, and, by Theorem 5, (2) holds for any
A. Notice that the instability of−K1 = I is irrelevant. From
limα→∞ µ(−K(α)) = limα→∞ max{α+ 2α2

5 , α− 3α2

5 } = ∞
we see that Theorem 3 is not helpful here.

Example 5:Consider

K(α) = αK1 + αrK2 with 1 < r < 2

and K1 =

[
−2 0
0 1

]

, K2 =

[
1 0
0 0

]

.

Theorem 5 is not helpful here, sincer < 2 (neither is
Theorem 2). Butµ(−K(α)) = max{−α, 2α − αr} → −∞
asα → ∞; hence, (2) follows from Theorem 3.

Remark 4:Examples 4 and 5 show that there are problems
with K(α) = K0+αK1+αrK2 which are covered by Theo-
rem 3, but not by Theorem 5; and vice versa. In general, both
theorems provide sufficient conditions for different problem
classes.

V. CONCLUDING REMARKS

The three theorems presented in this technical note guar-
antee the limiting property (2) of the matrix exponential (1);
essentially, a “large enough”K(α) in the (1,1)-block forces all
but the (2,2)-block of the matrix exponential to tend to zeroin
the limit. Theorem 3 states a sufficient condition for (2) based
on the log norm of−K(α), and Theorems 4 and 5 provide
sufficient conditions forK(α) having a particular polynomial
form. For the affine case (Theorem 4), the obtained condition
is also necessary.

Theorems 4 and 5 herein are obtained using the results
by Campbell et al. [4], [5]. Theorem 3, however, is obtained
independently of those results. Its method of proof is based
on the matrix differential equation that is solved uniquelyby
the matrix exponential (1), and on bounding its solution using
a Gronwall-type inequality. In contrast, Campbell et al. make
use of Cauchy’s integral formula to prove their result in [4],
for example.

The numerical examples herein were chosen to highlight
specific mathematical properties of the results. The limiting
property of the matrix exponential has been applied to practical
examples in [1] (an inverted pendulum) and [3] (a balancing
cube). Therein, Theorem 3 is used to derive a time-scale
separation algorithm that computes a discrete-time model
representing the plant dynamics under high-gain feedback on
some of the plant’s states. This model is then used to design
a stabilizing outer-loop controller.
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