
Combining Learned and Analytical Models for
Predicting Action Effects from Sensory Data

Alina Kloss∗, Stefan Schaal†∗, and Jeannette Bohg‡
∗Autonomous Motion Department, Max Planck Institute for Intelligent Systems, Germany
†Computational Learning and Motor Control Lab, University of Southern California, USA

‡Department of Computer Science, Stanford University, USA

Abstract—One of the most basic skills a robot should possess is
predicting the effect of physical interactions with objects in the
environment. This enables optimal action selection to reach a
certain goal state. Traditionally, dynamics are approximated by
physics-based analytical models. These models rely on specific
state representations that may be hard to obtain from raw
sensory data, especially if no knowledge of the object shape is
assumed. More recently, we have seen learning approaches that
can predict the effect of complex physical interactions directly
from sensory input. It is however an open question how far
these models generalize beyond their training data. In this work,
we investigate the advantages and limitations of neural network
based learning approaches for predicting the effects of actions
based on sensory input and show how analytical and learned
models can be combined to leverage the best of both worlds.
As physical interaction task, we use planar pushing, for which
there exists a well-known analytical model and a large real-
world dataset. We propose to use a convolutional neural network
to convert raw depth images or organized point clouds into a
suitable representation for the analytical model and compare
this approach to using neural networks for both, perception and
prediction. A systematic evaluation of the proposed approach on
a very large real-world dataset shows two main advantages of
the hybrid architecture. Compared to a pure neural network, it
significantly (i) reduces required training data and (ii) improves
generalization to novel physical interaction.

I. INTRODUCTION

We approach the problem of predicting the consequences
of physical interaction with objects in the environment based
on raw sensory data. Traditionally, interaction dynamics are
described by a physics-based analytical model [26, 18, 28]
which relies on a certain representation of the environment
state. This approach has the advantage that the underlying
function and the input parameters to the model have physical
meaning and can therefore be transferred to problems with
variations of these parameters. They also make the underlying
assumptions in the model transparent. However, defining such
models for complex scenarios and extracting the required
state representation from raw sensory data may be very hard,
especially if no assumptions about the shape of objects are
made.

More recently, we have seen approaches that successfully
replace the physics-based models with learned ones [29, 4,
21, 15, 3]. While often more accurate than analytical models,
these methods still assume a predefined state representation
as input and do not address the problem of how it may be
extracted from raw sensory data.

Some neural network based methods instead simultaneously
learn a representation of the input and the associated dynamics
from large amounts of training data, e.g. [5, 2, 24, 8]. They
have shown impressive results in predicting the effect of
physical interactions. In [2], the authors argue that a neural
network may benefit from choosing its own representation of
the input data instead of being forced to use a predefined
state representation. They reason that a problem can often
be parametrized in different ways and that some of these
parametrizations might be easier to obtain from the given
sensory input than others. The disadvantage of a learned
representation is however that it usually cannot be be mapped
to physical quantities. This makes it hard to intuitively under-
stand the learned functions and representations. In addition,
it remains unclear how these models could be transferred to
similar problems. Neural networks often have the capacity to
memorize their training data [27] and learn a mapping from
inputs to outputs instead of the “true” underlying function.
This can make perfect sense if the training data covers the
whole problem domain. However, when data is sparse (e.g.
because a robot learns by experimenting), the question of how
to generalize beyond the training data becomes very important.

Our hypothesis is that using prior knowledge from existing
physics-based models can provide a way to reduce the amount
of required training data and at the same time ensure good
generalization beyond the training domain. In this paper, we
thus investigate using neural networks for extracting a suitable
representation from raw sensory data that can then be con-
sumed by an analytical model for prediction. We compare this
hybrid approach to using a neural network for both perception
and prediction and to the analytical model applied on ground
truth input values.

As example physical interaction task, we choose planar
pushing. For this task, a well-known physical model [18] is
available as well as a large, real-world dataset [26] which
we augmented with simulated images. Given a depth image
of a tabletop scene with one object and the position and
movement of the pusher, our models need to predict the object
position in the given image and its movement due to the
push. Although the state-space of the object is rather low-
dimensional (2D position plus orientation), pushing is already
a quite complex manipulation problem: The system is under-
actuated and the relationship between the push and the object
movement is highly non-linear. The pusher can slide along

the object and dynamics change drastically when it transitions
between sticking and sliding contact or makes and breaks
contact.

Our experiments show that despite of relying on depth
images to extract position and contact information, all our
models perform similar to the analytical model applied on the
ground truth state. Given enough training data and evaluated
inside of its training domain, the pure neural network imple-
mentation performs best and even outperforms the analytical
model baseline significantly. However, when it comes to
generalization to new actions the hybrid approach is much
more accurate. Additionally, we find that the hybrid approach
needs significantly less training data than the neural network
model to arrive at a high prediction accuracy.

A. Contributions

In this work, we make the following contributions:
• We show how analytical dynamics models and neural

networks can be combined and trained end-to-end to
predict the effects of robot actions based on depth images
or organized point clouds.

• We compare this hybrid approach to using a pure neural
network for learning both, perception and prediction.
Evaluations on a real world physical interaction task
demonstrate improved data efficiency and generalization
when including the analytical model into the network over
learning everything from scratch.

• We show how the hybrid approach can be further ex-
tended by combining the analytical model with a learned
error-correction term to better compensate for possible
inaccuracies of the analytical model

• For training and evaluation, we augmented an existing
dataset of planar pushing with depth and RGB images
and additional contact information. The code for this is
available online.

B. Outline

This paper is structured as follows: We begin with a review
of related work in Section II. In Section III we formally
describe the problem we address, introduce an analytical
model for planar pushing (III-A) and the dataset we used for
our experiments (III-B). Section IV introduces and compares
the different approaches for learning perception and prediction.
The evaluation in Section V compares data-efficiency (V-C)
and generalization abilities (V-D, V-E, V-F) of the different
architectures. The perception task is kept simple for these
experiments by using a top-down view of the scene. This
changes in Section VI where we demonstrate that the hybrid
approach also performs well in a less constrained visual
setup. Section VII finally summarizes our results and gives
an outlook to future work.

II. RELATED WORK

A. Models for Pushing

Analytical models of quasi-static planar pushing have been
studied extensively in the past, starting with Mason [20]. Goyal

et al. [9] introduced the limit surface to relate frictional forces
with object motion, and much work has been done on different
approximate representations of it [10, 11]. In this work, we use
a model by Lynch et al. [18], which relies on an ellipsoidal
approximation of the limit surface.

More recently, there has also been a lot of work on data-
driven approaches to pushing [29, 4, 21, 15, 3]. Kopicki et al.
[15] describe a modular learner that outperforms a physics
engine for predicting the results of 3D quasi-static pushing
even for generalizing to unseen actions and object shapes.
This is achieved by providing the learner not only with the
trajectory of the global object frame, but also with multiple
local frames that describe contacts. The approach however re-
quires knowledge of the object pose from an external tracking
system and the learner does not place the contact-frames itself.
Bauza and Rodriguez [3] train a heteroscedastic Gaussian
Process that predicts not only the object movement under a
certain push, but also the expected variability of the outcome.
The trained model outperforms an analytical model [18] given
very few training examples. It is however specifically trained
for one object and generalization to different objects is not
attempted. Moreover, this work, too, assumes access to the
ground truth state, including the contact point and the angle
between the push and the object surface.

B. Learning Dynamics Based on Raw Sensory Data

Many recent approaches in reinforcement learning aim to
solve the so called “pixels to torque” problem, where the
network processes images to extract a representation of the
state and then directly returns the required action to achieve
a certain task [17, 16]. Jonschkowski and Brock [13] argue
that the state-representation learned by such methods can
be improved by enforcing robotic priors on the extracted
state, that may include e.g. temporal coherence. This is an
alternative way of including basic principles of physics in a
learning approach, compared to what we propose here. While
policy learning requires understanding the effect of actions, the
above methods do not acquire an explicit dynamics model.
We are interested in learning such an explicit model, as it
enables optimal action selection (potentially over a larger time
horizon). The following papers share this aim.

Agrawal et al. [2] consider a learning approach for pushing
objects. Their network takes as input the pushing action and
a pair of images: one before and one after a push. After
encoding the images, two different network streams attempt to
predict (i) the encoding of the second image given the first and
the action and (ii) the action necessary to transition from the
first to the second encoding. Simultaneously training for both
tasks improves the results on action prediction. The authors
do not enforce any physical models or robotic priors. As the
learned models directly operate on image encodings instead
of physical quantities, we cannot compare the accuracy of the
forward prediction part (i) to our results.

SE3-Nets [5] process organized (i.e. image shaped) 3D point
clouds and an action to predict the next point cloud. For
each object in the scene, the network predicts a segmentation

mask and the parameters of an SE3 transform (linear velocity,
rotation angle and axis). In newer work [6], an intermediate
step is added, that computes the 6D pose of each object,
before predicting the transforms based on this more structured
state representation. The output point cloud is obtained by
transforming all input pixels according to the transform for
the object they correspond to. The resulting predictions are
very sharp and the network is shown to correctly segment the
objects and determine which are affected by the action. An
evaluation of the generalization to new objects or forces was
however not performed.

Our own architecture is inspired by this work. The pure
neural network we use to compare to our hybrid approach can
be seen as a simplified variant of SE3-Nets, that predicts SE2
transforms (see Sec. IV). Since we define the loss directly
on the predicted movement of the object, we omit predicting
the next observation and the segmentation masks required for
this. We also use a modified perception network, which relies
mostly on a small image patch around the robot end-effector.

Finn et al. [8] is similar to [5] and explores different
possibilities of predicting the next frame of a sequence of
actions and RGB images using recurrent neural networks.

Visual Interaction Networks [24] also take temporal infor-
mation into account. A convolutional neural network encodes
consecutive images into a sequence of object states. Dynamics
are predicted by a recurrent network that considers pairs of
objects to predict the next state of each object.

C. Combining Analytical Models and Learning

The idea of using analytical models in combination with
learning has also been explored in previous work. Degrave
et al. [7] implemented a differentiable physics engine for rigid
body dynamics in Theano and demonstrate how it can be
used to train a neural network controller. In [22], the authors
significantly improve Gaussian Process learning of inverse
dynamics by using an analytical model of robot dynamics
with fixed parameters as the mean function or as feature
transform inside the covariance function of the GP. Both works
however do not cover visual perception. Most recently, Wu
et al. [25] used a graphics and physics engine to learn to
extract object-based state representations in an unsupervised
way: Given a sequence of images, a network learns to produce
a state representation that is predicted forward in time using
the physics engine. The graphics engine is used to render
the predicted state and its output is compared to the next
image as training signal. In contrast to the aforementioned
work, we not only combine learning and analytical models, but
also evaluate the advantages and limitations of this approach.
Finally, [19] present an interesting approach to learning func-
tions by training a neural network to combine a number of
mathematical base operations (like multiplication, division,
sine and cosine). This enables their “Equation Learner” to
learn functions which generalize beyond the domain of the
training data, just like traditional analytical models. Training
these networks is however challenging and involves training

many different models and choosing the best in an additional
model selection step.

III. PROBLEM STATEMENT

Our aim is to analyse the benefits of combining neural
networks with analytical models. We therefore compare this
hybrid approach to models that exclusively rely on either
approach. As a test bed, we use planar pushing, for which
a well-known analytical model and a real-world dataset are
available.

We consider the following problem: The input consists of
a depth image Dt of a tabletop scene with one object and the
pusher at time t, the starting position pt of the pusher and its
movement between this and the next timestep ut = pt+1−pt.
With this information, the models need to predict the object
position ot before the push is applied and its movement vo

t =
ot+1 − ot due to the push.

This can be divided into two subproblems:
Perception: Extract a suitable state representation of the

scene at time t (before the push) xt from the input image.
The form of xt depends on the following prediction model,
we only require that xt contains the object position ot.

fperception(D
t) = xt

Prediction: Given the state representation xt, the position
pt of the pusher and its movement ut:t+1, predict how the
object will move:

fprediction(x
t,pt,ut:t+1) = vo

t:t+1

In the following sections, we will introduce an analytical
model for computing fprediction and the dataset of real robot
pushes that we use for training and evaluation.

A. An Analytical Model of Planar Pushing

We use the analytical model of quasi-static planar pushing
that was devised by Lynch et al. [18]. It predicts the object
movement vo given the pusher velocity u, the contact point c
and associated surface normal n as well as two friction-related
parameters l and µ. The model is illustrated in Figure 1, which
also contains a list of symbols. Note that this model is still
approximate and far from perfectly modelling the stochastic
process of planar pushing [26].

Predicting the effect of a push with this model has two
stages: First, it determines whether the push is stable (“sticking
contact”) or whether the pusher will slide along the object
(“sliding contact”). In the first case, the velocity of the object
at the contact point will be the same as the velocity of the
pusher. In the sliding case however, the pusher movement can
be almost orthogonal to the resulting motion at the contact
point. We call the motion at the contact point “effective push
velocity” vp. It is the output of the first stage. Given vp and
the contact point, the second stage then predicts the resulting
translation and rotation of the object’s centre of mass.

x

x

o position of the object
vo linear and angular object velocity
vp linear velocity at the contact point -

effective push velocity
p position of the pusher
u linear pusher velocity - action
c contact point (global)
c′ contact point relative to o
n surface normal at c
l ratio between maximal torsional and

linear friction force
µ friction coefficient pusher-object

x

x

fb left or right boundary force of the
friction cone

mb torques corresponding to the
boundary forces

vo,b object velocities resulting from
boundary forces

vp,b effective push velocities corre-
sponding to the boundary forces

b = l, r placeholder for left or right
boundary

s contact indicator, s ∈ [0, 1]
k rotation axis

Fig. 1: Overview and illustration of the terminology for pushing.

Stage 1: Determining the Contact Type and Computing vp:
To determine the contact type (slipping or sticking), we have
to find the left and right boundary forces fl, fr of the friction
cone (i.e. the forces for which the pusher will just not start
sliding along the object) and the corresponding torques ml,
mr. The opening angle α of the friction cone is defined by
the friction coefficient µ between pusher and object. The forces
and torques are then computed by

α = arctan(µ) (1)
fl = R(−α)n fr = R(α)n (2)
ml = c′xfly − c′yflx mr = c′xfry − c′yfrx (3)

where R(α) denotes a rotation matrix given α and c′ = c−o
is the contact point relative to the object’s centre of mass.

To relate the forces to object velocities, Lynch et al. [18] use
an ellipsoidal approximation to the limit surface. To simplify
notation, we use subscript b to refer to quantities associated
with either the left l or right r boundary forces. vo,b and ωo,b
denote linear and angular object velocity, respectively. vp,b

are the push velocities that would create the boundary forces.
They span the so called ”motion cone”.

vo,b =
ωo,bl

2

mb
fb (4)

vp,b = ωo,b(
l2

mb
fb + k× c′) (5)

ωo,b acts as a scaling factor. Since we are only interested in the
direction of vp,b and not in its magnitude, we set ωo,b = mb:

vp,b = l2fb +mbk× c′ (6)

To compute the effective push velocity vp, we need to
determine the contact case: If the push velocity lies outside of
the motion cone, the contact will slip. The resulting effective
push velocity then acts in the direction of the boundary
velocity vp,b which is closer to the push direction:

vp =
u · n

vp,b · n
vp,b (7)

Otherwise contact is sticking and we can use the pusher
velocity as effective push velocity vp = u. When the norm
of n is zero (due to e.g. a wrong prediction of the perception
neural network), we set the output vp,b to zero.

The object will of course only move if the pusher is in
contact with the object. To use the model also in cases

where no force acts on the object, we introduce the contact
indicator variable s. It takes values between zero and one and
is multiplied with vp to switch off responses when there is no
contact.

vp = svp

We allow s to be continuous instead of binary to give the
model a chance to react to the pusher making or breaking
contact during the interaction.

Stage 2: Using vp to Predict the Object Motion: Given the
effective push velocity vp and the contact point c′ relative
to the object centre of mass, we can compute the linear and
angular velocity vo = [vox, voy, ω] of the object.

vox =
(l2 + c′2x)vpx + c′xc

′
yvpy

l2 + c′2x + c′2y
(8)

voy =
(l2 + c′2y)vpy + c′xc

′
yvpx

l2 + c′2x + c′2y
(9)

ω =
c′xvoy − c′yvox

l2
(10)

Discussion of Underlying Assumptions: The analytical
model is built on three simplifying assumptions: (i) quasi-
static pushing, i.e. the force applied to the object is big
enough to move the object, but not to accelerate it (ii) the
pressure distribution of the object on the surface is uniform
and the limit-surface of frictional forces can be approximated
by an ellipsoid (iii) the friction coefficient between surface
and object is constant.

The analysis performed by Yu et al. [26] shows that as-
sumption (ii) and (iii) are violated frequently by real world
data. Assumption (i) holds for push velocities below 50 mm

s .
In addition, the contact situation may change during pushing
(as the pusher may slide along the object and even lose
contact), such that the model predictions become increasingly
inaccurate the longer ahead it needs to predict in one step.

B. Data

We use the MIT Push Dataset [26] for our experiments. It
contains object pose and force recordings (not used here) from
real robot experiments, where eleven different planar objects
are pushed on four different surfaces. For each object-surface
combination, the dataset contains about 6000 pushes that vary

in the manipulator (“pusher”) velocity and acceleration, the
point on the object where the pusher makes contact and
the angle between the object surface and the push direction.
Pushes are 5 cm long and data was recorded at 250 Hz.

As this dataset does not contain RGB or depth images,
we render them using OpenGL and the mesh-data supplied
with the dataset. In this work, we only use the depth images,
RGB will be considered in future work. A rendered scene
consists of a flat surface with one of four textures (representing
the four surface materials), on which one of the objects is
placed. The pusher is represented by a vertical cylinder with
no arm attached. Figures 2 and 3 show the different objects
and example images. We also annotated the dataset with all
information necessary to apply the analytical model to use it as
a baseline. The code for annotation and rendering is available
here.

For each experiment, we construct datasets for training and
testing from a subset of the Push Dataset. As the analytical
model does not take acceleration of the pusher into account,
we only use push variants with zero pusher acceleration. We
however do evaluate on data with high pusher velocities, that
break the quasi-static assumption made in the analytical model
(in Sec. V-E). One data point in our datasets consists of a
depth image showing the scene before the push is applied,
the object position before and after the push and the initial
position and movement of the pusher. The prediction horizon
is 0.5 seconds in all datasets 1. More information about the
specific datasets for each experiment can be found in the
corresponding sections.

We use data from multiple randomly chosen timesteps of
each sequence in the Push Dataset. Some of the examples
thus contain shorter push-motions than others, as the pusher
starts moving with some delay or ends its movement during
the 0.5 seconds time-window. To achieve more visual variance
and to balance the number of examples per object type, we
sample a number of transforms of the scene relative to the
camera for each push. Finally, about a third of our dataset
consists of examples where we moved the pusher away from
the object, such that it is not affected by the push movement.

IV. COMBINING NEURAL NETWORKS AND ANALYTICAL
MODELS

We now introduce the neural network variants that we will
analyse in the following section. All architectures share the
same first network stage that processes raw depth images
and outputs a lower-dimensional encoding and the object
position. Given this output, the pushing action (movement u
and position p) of the pusher, and the friction parameters µ
and l2, the second part of these networks predicts the linear
and angular velocity vo of the object. This predictive part
differs between the network variants. While three of them
(simple, full, error) use variants of the analytical dynamics
model established in Sec. III-A, variant neural has to learn
the dynamics with a neural network. The prediction part has
about 1.8 million trainable parameters for all variants except
for error, which has 2.7 million parameters.

Fig. 2: Rendered objects of the Push Dataset [26]: rect1-3, ellip1-3, tri1-3,
butter, hex. Red dots indicate the subset of contact points we use to collect a
test set with held-out pushes for Experiment V-D.

Fig. 3: Rendered RGB and depth images on two of the four surfaces in the
MIT dataset, plywood and abs.

We implement all our networks as well as the analytical
model in tensorflow [1], which allows us to propagate gradi-
ents through the analytical models just like any other layer.

A. Perception

The architecture of the network part that processes the
image is depicted in Fig. 4. We assume that the robot knows
the position of its end-effector, which allows us to extract a
small (80×80 pixel) image patch (“glimpse”) around the tip of
the pusher. If the pusher is close enough to the object to make
contact, the important information for predicting the effect of
the push - like the contact point and the normal to the object
surface - can be estimated from this smaller image. It thus
serves as an attention-mechanism to focus the computations
on the most relevant part of the image. Only the position of
the object needs to be estimated from the full image. The
state representation that our perception model extracts thus
contains the estimated object position and an encoding of the
information represented in the glimpse.

To obtain the glimpse encoding, we process the glimpse
with three convolutional layers with ReLU non-linearity, each
followed by max-pooling and batch normalization [12]. For
estimating the object position, the full image is processed
with a sequence of four convolutional and three deconvolution
layers. The output of the last deconvolution has the same size
as the image input and only has one channel that resembles
an object segmentation map. We use spatial softmax [16] to
calculate the pixel location of the segmented object centre.

Initial experiments showed that not using the glimpse
strongly decreased performance for all networks. We also
found that using both, the glimpse and an encoding of the full
image, for estimating all physical parameters was disadvanta-
geous: Using the full image increases the number of trainable
parameters in the prediction network but adds no information
that is not already contained in the glimpse.

B. Prediction

Neural Network only (neural): Figure 5 a) shows the
prediction part of the variant neural, which uses a neural

https://github.com/mcubelab/pdproc

network to learn the dynamics of pushing. The input to this
part is a concatenation of the output from perception with the
action and friction parameter l. The network processes this
input with three fully-connected layers before predicting the
object velocity vo. All intermediate fully-connected layers use
ReLU non-linearities. The output layers do not apply a non-
linearity.

Full analytical model (hybrid): This variant uses the
complete analytical model as described in Section III-A. Sev-
eral fully-connected layers extract the necessary input values
from the glimpse encoding and the action, as shown in Figure 5
b). These are the contact point c, the surface normal n and
the contact indicator s. For predicting s, we use a sigmoidal
non-linearity to limit the predicted values to [0, 1].

Simplified analytical model (simple): Simple (Figure 5
c) only uses the second stage of the analytical model. As for
hybrid, a neural network extracts the model inputs (effective
push velocity vp, contact point c) from the encoded glimpse
and the action.

We use this variant as a middle ground between the two
other options: It still contains the main mechanics of how an
effective push at the contact point moves the object, but leaves
it to the neural network to deduce the effective push velocity
from the scene and the action. This gives the model more
freedom to correct for possible shortcomings of the analytical
model. We expect these to manifest mostly in the first stage of
the model, as small errors can have a big effect there when they
influence whether a contact is estimated as sticking or slipping.
Since the second stage of the analytical model does not specify
how the input action relates to the object movement, simple
also allows us to evaluate the importance of this particular
aspect of the analytical model.

Full analytical model + error term (error): One concern
when using a predefined analytical model is that the trained
network cannot improve over the performance of the analytical
model. If the analytical model is inaccurate, the hybrid archi-
tecture can only compensate to some degree by manipulating
the input values of the model, i.e. by predicting “incorrect”
values for the components of the state representation. This
limits its ability to compensate for model errors as it might
not be possible to account for all types of errors in this way.

As an alternative, we propose to learn an error-correction
term which is added to the output prediction of the analytical
model. The error-term is thus not constrained by the model
and should be able to compensate for a broader class of model
errors.

Figure 5 d) shows the architecture. As input for predicting
the error-term, we use the same values that neural receives for
predicting the object velocity, i.e. the glimpse encoding, the
action, the predicted object position and the friction parameter.
Note that we do not propagate gradients to the inputs of
the error-prediction module. The intuition behind this is that
we do not want the error-prediction to interfere with the
prediction of the inputs for the analytical model. We evaluate
the effect of this architectural decision in Section V-H. A
second variant that we compare to in this section aims to

240x320

80x80

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

1

co
nv

3

co
nv

2

Glimpse:

Input

de
co

nv
1

de
co

nv
2

de
co

nv
3

Encoding Localization

gl
im

ps
e

en
co

di
ng

ob
je

ct
 p

os
iti

on

sp
at

ia
l s

of
tm

ax

To pre-
diction

3-8 3-16 3-32

7-8 5-16 3-32 3-64 13-16 3-8 3-1

Fig. 4: Perception part for all network variants. White boxes represent
tensors, green arrows and boxes indicate network layers, whereas black arrows
represent dataflow without processing. For green arrows, the type of layer
(convolution or deconvolution) is denoted in the name of their output tensors.
The numbers below the output tensors denote the kernel size and the number
of output channels for each layer.
The output of this module, glimpse encoding and the estimated object position
o, serves as input for the prediction network depicted in Figure 5. For
training, gradient information is backpropagated through the prediction to the
perception network.

improve the generalizability of the error-prediction to faster
push movements. This is achieved by normalizing the input
action to unit length before feeding it into the error-prediction
module.

C. Training

All our architectures are trained end-to-end, i.e. the loss is
propagated through the prediction to the perception part of the
networks. The loss L penalizes the Euclidean distance between
the predicted and the real object position in the input image
(pos), the Euclidean error of the predicted object translation
(trans), the error in the magnitude of translation (mag) and
in angular movement (rot) in degree (instead of radian, to
ensure that all components of the loss have the same order of
magnitude). We use weight decay with λ = 0.001.

Let v̂o and ô denote the predicted and vo, o the real object
movement and position. w are the network weights and νo =
[vox, voy] denotes linear object velocity.

L(v̂o, ô,vo,o) = trans+mag + rot+ pos+ λ
∑

w
‖ w ‖

trans = ‖ν̂o − νo‖ mag = |‖ν̂o‖ − ‖νo|‖
rot = 180

π |ω − ω̂| pos =‖ o− ô ‖
When using the variant hybrid, a major challenge is the

contact indicator s: In the beginning of training, the direction
of the predicted object movement is mostly wrong. s therefore
receives a strong negative gradient, causing it to decrease
quickly. Since the predicted motion is effectively multiplied
by s, a low s results in the other parts of the network receiving
small gradients and thus greatly slows down training. We
therefore add the error in the magnitude of the predicted
velocity to the loss to prevent s from decreasing too far in
the early training phase.

We use Adam optimizer [14] with a learning rate of 0.0001
and a batch-size of 32 for 75,000 steps.

Out:Input: Neural Network:
a) Neural Network only (neural)

object
velocityfc

2

256512

fc
1

fc
3

128

c) Simplified analytical model (simple)

contact point

fc
2

256512

fc
1

fc
3

128

effective push
velocity

glimpse
encoding

action

l

A
na

ly
ti

ca
l m

od
el

, p
ar

t 2
Fu

ll
an

al
yt

ic
al

 m
od

el

b) Full analytical model (hybrid)

contact indicator

normal

fc
2

256512

fc
1

fc
3

128l

glimpse
encoding

action

contact point

d) Full analytical model with error-correction (error)

action

l

glimpse
encoding

co
nc

at
co

nc
at

co
nc

at

Fu
ll

an
al

yt
ic

al
 m

od
elcontact indicator

normal

fc
2

256512

fc
1

fc
3

128
l

glimpse
encoding

action contact point

fc
2

128256

fc
1

fc
3

64

error term

co
nc

at
co

nc
at

Fig. 5: Prediction parts of the four network variants neural, hybrid, simple
and error. White and purple boxes represent tensors, where the purple color
indicates tensors that are computed by the perception part shown in Figure 4.
During training, the gradient information is backpropagated through these
tensors to the perception part.
Green arrows and boxes indicate network layers, whereas black arrows
represent dataflow without processing. In this network, all green arrows
represent fully-connected layers and the numbers beneath their output tensors
(fc) denote the number of output channels. The red bar in architecture (d)
indicates that no gradients are propagated to the inputs of this layer.

V. EVALUATING GENERALIZATION

In this section, we test our hypothesis that using an ana-
lytical model for prediction together with a neural network
for perception improves data efficiency and leads to better
generalization than using neural networks for both, perception
and prediction. We evaluate how the performance of the
networks depends on the amount of training data (Experiment
V-C) and how well they generalize to (i) pushes with new
pushing angles and contact points (Experiment V-D), (ii) new
push velocities (Experiment V-E) and (iii) unseen objects
(Experiment V-F).

For the experiments in this section, we use a top-down view
of the scene, such that the object can only move in the image
plane and the z-coordinate of all scene components remains
constant. This simplifies the application of the analytical model
by removing the need for an additional transform between the
camera and the table. It also simplifies the perception task
and allows us to focus this evaluation on the comparison of
the hybrid and the purely neural approach. In Section VI we
will show how to extend the proposed model to work on more
difficult camera settings.

A. Baselines

We use three baselines in our experiments. All of them use
the ground truth input values of the analytical model (action,
object position, contact point, surface normal, contact indicator
and friction coefficients) instead of depth images. They thus do
not solve the full problem of predicting object movement from
raw sensory input. Instead, they address the easier problem of
prediction given perfect state information. Accordingly, the
baselines only output the object velocity, but not its initial
position in the scene.

If the pusher makes contact with the object during the
push, but is not in contact initially, we use the contact point
and normal from when contact is first made and shorten the
action accordingly. Note that this gives the baseline models an
additional advantage over architectures that have to infer such
input values from raw sensory data.

The first baseline is just the average translation and rotation
over the dataset. This is equal to the error when always
predicting zero movement, and we therefore name it zero.
The second,physics, is the full analytical model evaluated
on the ground truth input values. The third baseline, called
neural dyn is a neural network that has the same three-layer
architecture as the prediction module of neural (see Figure 5
a) for details). The difference between neural and neural dyn
is their input: While neural receives the glimpse encoding and
object position from the perception network as input, neural
dyn gets the ground truth physical state representation that is
also used in the analytical model. This allows us to evaluate
whether neural benefits from being able to learn its own state
representation (the glimpse encoding) end-to-end through the
prediction part.

B. Metrics

For evaluation, we compute the average Euclidean distance
between the predicted and the ground truth object translation
(trans) and position (pos) in millimeters as well as the average
error on object rotation (rot) in degree. As our datasets
differ in the overall object movement, we report errors on
translation and rotation normalized by the average motion in
the corresponding dataset given by the error of the baseline
zero.

C. Data Efficiency

The first hypothesis we test is that combining the analytical
model with a neural network for perception reduces the
required training data as compared to a pure neural network.

Data: We use a dataset that contains all objects from the
MIT Push dataset and all pushes with velocity 20mms and split
it randomly into training and test set. This results in about
190k training examples and about 38k examples for testing.
To evaluate how the networks’ performance develops with
the amount of training data, we train the models on different
subsets of the training split with sizes from 2500 to the full
190k. We always evaluate on the full test split. To reduce
the influence of dataset composition especially on the small
datasets, we average results over multiple different datasets
with the same size.

Results: Figure 6 shows how the errors in predicted trans-
lation, rotation and object position develop with more training
data and Table I contains numeric values for training on the
biggest and smallest training split. As expected, the combined
approach of neural network and analytical model (hybrid and
error) already performs very well on the smallest dataset (2500
examples) and beats the other models including the neural dyn
baseline, which uses the ground truth state representation, by
a large margin. It takes more than 20k training examples for
the other models to reach the performance of hybrid, where
predicting rotation seems to be harder to learn than translation.

Despite of having to rely on raw depth images instead of the
ground truth state representation, all models perform at least
close to the physics baseline when using the full training set.
However, only the pure neural network and the hybrid model
with error-correction are able to improve on the baseline. This
shows that the analytical model limits hybrid in fitting the
training data perfectly, since the model itself is not perfect
and does not allow for overfitting to noise in the training
data. Neural and error have more freedom for fitting the
training distribution, which however also increases the risk
of overfitting.

Combining the learned error-correction with the fixed ana-
lytical model is especially helpful for predicting the translation
of the object. To also improve the prediction of rotations, the
model needs more than 20k training examples, which is similar
to neural. While neural makes a larger improvement on the
full dataset, error combines the comparably good performance
of hybrid on few training examples with the ability to improve
on the model given enough data.

TABLE I: Error in predicted translation (trans) and rotation (rot) as percentage
of the average movement given by zero (standard errors in brackets). pos
denotes the error in predicted object position. Values shown are for training
on the full training set (190k examples) and on a 2500 examples subset.

trans rot pos [mm]

2.
5k

neural 33.6 (0.18)% 62.54 (0.42)% 0.46 (0.002)
simple 32.3 (0.19)% 53.6 (0.37)% 0.44 (0.002)
hybrid 25.4 (0.17)% 45.5 (0.36)% 0.46 (0.002)

error 24.7 (0.16)% 46.8 (0.36)% 0.45 (0.002)
neural dyn 32.6 (0.19)% 63.5 (0.46)% -

19
0k

neural 17.4 (0.12)% 33.4 (0.28)% 0.31 (0.002)
simple 19.3 (0.13)% 35.7 (0.3)% 0.33 (0.002)
hybrid 19.3 (0.13)% 36.1 (0.3)% 0.32 (0.002)

error 18.4 (0.12)% 34.6 (0.29)% 0.31 (0.002)
neural dyn 19.2 (0.12)% 36.3 (0.29)% -

physics 18.95 (0.13)% 35.4 (0.3)% -
zero 2.95 (0.02)mm 1.9 (0.01) ◦ -

TABLE II: Errors of the predicted input values for the analytical model:
Hybrid and error predict the contact point c, then normal n and the contact
indicator s accurately. Simple only predicts the contact point and the effective
push velocity vp, which both deviate notably from their ground truth values.
Values shown are for training on the full training set (190k examples).

c [mm] n [◦] s vp [◦]

simple 22.4 (0.027) - - 18.1 (0.111)
hybrid 4.4 (0.01) 3.6 (0.024) 0.08 (0.001) -

error 4.8 (0.011) 2.5 (0.02) 0.08 (0.001) -

The variant simple, which uses only the second part of the
analytical model, also combines learning and a fixed model for
predicting the dynamics. But in contrast to error, this variant
seems to combine the disadvantages of both approaches: It
needs much more training data than hybrid but is still limited
by the performance of the analytical model and gets quickly
outperformed by the pure neural network when more data is
available.

The comparison of neural and the baseline neural dyn shows
that despite of having access to the ground truth data, neural
dyn actually performs worse than neural on the full dataset.
This seems to agree with the theory of Agrawal et al. [2], that
training perception and prediction end-to-end and letting the
network chose its own state representation instead of forcing it
to use a predefined state may be beneficial for neural learning.

Finally, we evaluate how accurate the predicted input values
to the analytical model are for simple, hybrid and error. If the
analytical model was perfect, we would expect the predicted
values to be very close to the real physical state. Higher errors
could thus indicate that the models learn to compensate for
inaccuracies of the analytical model.

As can be seen in Table II, both hybrid and error make
fairly accurate predictions for the object state, with contact
point errors around 5 mm and less than 5◦ angle between the
predicted and correct normal. The contact point indicator s is
also estimated with high accuracy. Only variant simple shows
a larger error between the predicted and true contact points.
The predicted effective push velocity vp also does not match
the values we got from applying the first stage of the analytical
model on ground truth input very closely. Since these errors do
not seem to harm the overall prediction accuracy, we conclude

tr
an

s
[%

]

ro
t[

%
]

neural simple hybrid error neural dyn physics

po
s

[m
m

]

20

25

30

35

40

50

60

0.3

0.4

0.5

2.5 5 7.5 10 15 20 50 100 190 2.5 5 7.5 10 15 20 50 100 190 2.5 5 7.5 10 15 20 50 100 190

thousand training examples thousand training examples thousand training examples

Fig. 6: Prediction errors versus training set size (x-axis in logarithmic scale). Errors on translation and rotation are given as percentage of the average movement
in the test set. The model-based architecture hybrid performs much better than the other networks when training data is sparse.

that they cancel each other out. This shows that simple is not
as strongly constrained by its analytical component as hybrid
and error and that it thus has more freedom in choosing its
state representation.

Summary: All our models reach the performance of the
(perception-free) physics baseline given enough training data.
Combining neural networks and analytical models strongly
improves performance in comparison to to purely learned
models when little training data is available. However, neural
can achieve the highest prediction accuracy and beat the
physics baseline when trained on a very large dataset.

To further improve the prediction accuracy of hybrid while
preserving its data-efficiency, an additive error-correction term
can be learned. Replacing a part of the analytical model with
a learned component in simple in contrast harmed the data
efficiency.

D. Generalization to New Pushing Angles and Contact Points

The previous experiment showed the performance of the
different models when testing on a dataset with a very similar
distribution to the training set. Here, we evaluate the perfor-
mance of the networks on held-out push configurations that
were not part of the training data. Note that while the test set
contains combinations of object pose and push action that the
networks have not encountered during training, the pushing
actions or object poses themselves do not lie outside of the
value range of the training data. This experiment thus test the
models’ interpolation abilities.

Data: We again train the networks on a dataset that contains
all objects and pushes with velocity 20mms . For constructing
the test set, we collect all pushes with (i) pushing angles ±20◦
and 0◦ to the surface normal (independent from the contact
points) and (ii) at a set of contact points illustrated in Figure 2
(independent from the pushing angle).

The remaining pushes are split randomly into a training and
a validation set, which we use to monitor the training process.
There are about 114k data points in the training split, 23k in
the validation split and 91k in the test set.

Results: As Table III shows, hybrid and error perform best
for predicting the object velocity for pushes that were not part
of the training set. Although still being close, none of the
networks can outperform the physics baseline on this test set.

Note that the difficulty of the test set in this experiment
differs from the one in the previous experiment, as can be
seen from the different performance of the physics baseline:
Due to the central contact point locations and small pushing
angles, the test set contains a high proportion of pushes with
sticking contact (see Section III-A), for which the resulting
object movement is similar to the pusher movement. Prediction
in sticking contact cases is therefore generally simpler than
in cases in which the pusher slides along the object. This
difference in difficulty makes it hard to compare the results
between Table I and Table III in terms of absolute values.

With more than 100k training examples, we supply enough
data for the pure neural model to clearly outperform the
combined approach and the baseline in the previous experi-
ment (i.e. when the test set is similar to the training set, see
Figure 6). The fact that neural now performs worse than hybrid
and physics indicates that its advantage over the physics base-
line may not come from it learning a more accurate dynamics
model. Instead, it probably memorizes specific input-output
combinations that the analytical model cannot predict as well,
e.g. due to noisy object pose data.

This might also be the reason why error cannot improve
on hybrid as much as in the previous experiment, especially
when it comes to predicting the translation of the object. It is
however encouraging to see that the learned error correction
term for the predicted rotation is still beneficial for pushes not
seen during training.

In contrast to hybrid and error, simple again does not
seem to profit from using the simplified analytical model and
performs similar to neural.

As in the previous experiment (see Table I), we also tested
the generalization ability of the networks when trained on a
smaller training set. If we supply only 2500 training examples,
the difference between hybrid and the purely learned model
is again much more pronounced: Hybrid achieves 20.3 %
translation and 43.8 % rotation error whereas neural lies at
38.7 % and 63.4 % respectively.

Summary: The purely learned model performs worse than
the hybrid approaches when interpolating to unseen push
configurations. For all models, the difference to the physics
baseline is larger when the training distribution does not match
the test distribution.

TABLE III: Prediction errors for testing on pushes with pushing angles and
contact points not seen during training.

trans rot pos [mm]

neural 16.5 (0.06)% 36.1 (0.17)% 0.31 (0.001)
simple 16.4 (0.06)% 37.1 (0.18)% 0.31 (0.001)
hybrid 15.6 (0.07)% 35.3 (0.19)% 0.31 (0.001)

error 15.6 (0.07)% 34.5 (0.18)% 0.32 (0.001)
neural dyn 18.1 (0.07)% 44.1 (0.2)% -

physics 14.6 (0.06)% 32.8 (0.18)% -
zero 4.36 (0.013) mm 2.27 (0.009) ◦ -

E. Generalization to Different Push Velocities

In this experiment, we test how well the networks generalize
to unseen push velocities. In contrast to the previous experi-
ment, the test actions in this experiment have a different value
range than the actions in the training data, and we are thus
looking at extrapolation. As neural networks are usually not
good at extrapolating beyond their training domain, we expect
the model-based network variants to generalize better to push-
velocities not seen during training.

Data: We use the networks that were trained in the first
experiment (V-C) on the full (190k) training set. The push
velocity in the training set is thus 20 mm

s . We evaluate on
datasets with different push velocities ranging from 10 mm

s to
300 mm

s . Since seeing only one push velocity during training
might be a disadvantage for the learned models, we also com-
pose two new training datasets, one with velocities conform
to the quasi-static assumption (10 and 20 mm

s) and one with a
higher second velocity (20 and 50 mm

s) that violates the quasi-
static assumption. Both datasets have slightly more than 125k
training examples.

Results: Results are shown in Figure 7. Since the input
action does not influence perception of the object position, we
only report the errors on the predicted object motion.

When training on push velocities below 50 mm
s , we see a

very large difference between the performance of our com-
bined approach and the pure neural network for higher veloc-
ities. Neural’s and neural dyn’s predictions quickly become
very inaccurate, with the error on predicted translation rising
to more than 60 % and the error on predicted rotation to more
than 80 % of the error when predicting zero movement always.
The performance of hybrid on the other hand is most constant
over the different push velocities and declines only slightly
more than the physics baseline. Error, too, extrapolates well,
but only when trained on more than one push velocity.

Like neural and neural dyn, simple, too, gets worse on
higher velocities. Its performance when predicting rotations
however degrades much less than for predicting translations.
The reason for this is that all three architectures struggle
mostly with predicting the correct magnitude of the object
translation and not so much with predicting the translation’s
direction. By using the second stage of the analytical model,
simple has information about how the direction of the object
translation and the contact point relate to its rotation, which
results in much more accurate predictions.

The advantage of hybrid for extrapolation lies in the first

stage of the analytical model, which allows it to scale its
predictions according to the magnitude of the action and
the contact indicator s. Both are in essence multiplication
operations. A general multiplication of inputs can however
not be expressed using only fully-connected layers (as used
by simple, neural, neural dyn and the error-prediction part
of error) because fully-connected layers essentially perform
weighted additions of their inputs. So instead of learning
the underlying function, the networks are forced to resort to
memorizing input-output relations for the magnitude of the
object motion, which explains why extrapolation does not
work well, especially when training on low push velocities.

When combining the prediction of the analytical model
with a learned error-term and training only on one push
velocity, the resulting model suffers from the same issues as
the other network-based variants. The decline is however less
pronounced than for neural, and only starts after 50mms . A
possible reason for this is that the error-correction term is
rather small compared to the output of the analytical model.
This means that the weights with which the action enters the
computation of the error term are smaller than for neural,
simple or neural dyn.

Interestingly, adding a second training velocity completely
changes the picture and makes error perform on par with
or even better than hybrid. Our hypothesis is that seeing
different velocities during training prevents the error term from
overfitting to the input action and minimizes the effect of the
action magnitude on the predicted error-term. In Section V-H,
we show that for training on only one push velocity, error can
also be made more robust to higher velocities by normalizing
the push action before using it as input to the error-prediction.

While the physics baseline performs better than the models
trained on low push velocities, it predictions also get worse
on higher push velocities. The main reason for this is that the
quasi-static assumption of the model is violated: For pushes
faster than 20 mm

s , the object gets accelerated and can continue
sliding even after contact to the pusher was lost.

How different the dynamics of pushing are between the
quasi-static and this dynamic behaviour also becomes apparent
when we include the push velocity 50 mm

s in the training data
for our learned models: They all extrapolate much better to
higher velocities and are often able to outperform the physics
baseline. This increase of performance for fast pushes however
only extends to the slowest push velocity (10 mm

s) for hybrid,
whereas all other models perform slightly worse than their
counterparts that were only trained on one push velocity.

We also still see that with increasing push velocities, the
variants simple, neural and neural dyn make significantly
larger errors for predicting the translation of the object than
hybrid and error. Interestingly, for predicting the object ro-
tation, all models except for neural dyn perform extremely
well, with hybrid even doing slightly worse than the others.
A possible reason for this difference between translation and
rotation could be that the magnitude of rotations does not
increase as strongly with the push velocity as the magnitude
of translations: The average rotation increases from 1.4◦ on

20

40

60

80

tr
a
n
s
[%
]

training velocities 10, 20mm
s

training velocity 20mm
s

training velocities 20, 50mm
s

10 20 50 75 100 150 200 300

40

60

80

100

push velocity [mm
s
]

ro
t
[%
]

10 20 50 75 100 150 200 300

push velocity [mm
s
]

10 20 50 75 100 150 200 300

push velocity [mm
s
]

physics neural simple hybrid error neural dyn

Fig. 7: Errors on predicted translation and rotation for testing on different push velocities. In the first column, all models were trained on push velocities
10 and 20 mm

s
, in the second column on velocity 20 mm

s
and in the last column on velocities 20 and 50 mm

s
. When training on velocities that are small

enough to ensure quasi-static pushing, all models have trouble extrapolating to higher velocities, but hybrid and error stay much closer to the physics baseline
than simple, neural and neural dyn. Seeing additional training data from a higher push velocity (50 mm

s
) that violates the quasi-static assumption strongly

improves the generalization to higher velocities for all models and enables them to beat the physics baseline in many cases. Especially for the predicted object
translation, we however still see a much stronger decrease in performance for simple, neural and neural dyn than for hybrid, error and physics.

10 mm
s pushes to 14.4◦ on 300 mm

s pushes, whereas translation
increases from 2.1 to 24.8 mm. The models therefore need to
change their predicted rotations less in response to higher push
velocities than they have to for translation.

Summary: Extrapolating to different push velocities is dif-
ficult for purely learned models, especially when the training
data only contains low pushing velocities. Using the analytical
model in hybrid and error facilitates extrapolation by provid-
ing multiplication operations and explaining the influence of
the action on the resulting movement. Since the quasi-static
assumption of the analytical model is violated by fast pushes,
our models can however learn to outperform the physics
baseline in this regime when they have training data from
faster pushes.

F. Generalization to Different Objects

This experiment tests how well the networks generalize
to unseen object shapes and how many different objects the
networks have to see during training to generalize well.

Data: We train the networks on three different datasets:
With one object (butter), two objects (butter and hex) and
three objects (butter, hex and one of the ellipses or triangles).
The datasets with fewer objects contain more augmented data,
such that the total number of data points is about 35k training
examples in each. As test sets, we use one dataset containing
the three ellipses and one containing all triangles. While this is
fewer training data than in the previous experiments, it should
be sufficient for the pure neural network to perform as well
as hybrid, since the test sets contain only few objects.

Results: The results in Figure 8 show that neural is consis-
tently worse than the other networks when predicting rotations.
It also improves most notably when one example of the test
objects is in the training set. The differences between the

models are less pronounce when predicting translation, except
for simple which performs particularly bad on triangles. The
different models do not differ much when predicting position,
which is not surprising, since they share the same perception
architecture. The architecture with added error-term does not
perform very different from hybrid, which implies that the
error-correction term does not depend much on the shape of
the object.

In general, all models perform surprisingly well on ellipses,
even if the models only had access to data from the butter
object. Reaching the baseline performance on triangles is
however only possible with a triangle in the training set.
Predicting the object’s position is most sensitive to the shapes
seen during training: It generalizes well to ellipses which have
similar shape and size as the butter or hex object. The triangles
on the other hand are very different from the other objects in
the dataset and the error for localizing triangles is by factor
ten higher than for ellipses.

Summary: Using the analytical model in hybrid and error
also facilitates generalization to novel object shapes, which
is more difficult for the purely learned model. All models
struggle slightly with localizing objects of unknown shapes.

G. Visualizations

As a qualitative evaluation, we plot the predictions of our
networks, the physics and neural dyn baselines and the ground
truth object motion for 200 repetitions of the same push
configuration. The data for these repeated pushes is available
with the MIT Push dataset. All repetitions have the same
nominal pushing angle (0◦), velocity (20mms) and contact
point, but the exact values vary slightly between individual
pushes. To keep the visual input diverse, we also sample a
different transformation of the whole scene for each repetition,

trained on

te
st

ed
 o

n

20

40

tr
an

s
[%

]

20

40

60

ro
t

[%
]

0

0.5

po
s

[m
m

]

20

40

tr
an

s
[%

]

20

40

60

ro
t

[%
]

0

5

po
s

[m
m

]

neural simple hybrid error physics
Fig. 8: Prediction errors in translation, rotation and position on objects not seen during training. Training objects are shown on the x-axis. The top row shows
results for evaluating on ellipses, the bottom row on triangles. All networks generalize well to ellipses, but are worse for triangles, where the error in predicted
position is by factor ten higher than for the other objects. Neural particularly struggles with predicting rotations of previously unseen objects.

such that the object’s pose in the image varies. The networks
were trained on the full dataset from Experiment V-C.

The results shown in Figure 9 illustrate that the resulting
ground truth object motion for the same push configuration
varies greatly between trials. Especially in terms of object
rotation, the distribution of outcomes shows two distinct
modes (one close to the overall mean and one with notably
stronger object rotation). By comparing the ground truth with
the prediction of the analytical model, we can estimate how
much of this variance is due to slight changes in the push
configuration between trials (these also reflect in the analytical
model) and how much is caused by other, non-deterministic
effects.

The predictions of hybrid and the analytical model are very
similar. This again shows that the state-representation that the
neural network part of hybrid predicts is mostly accurate. The
plotted contact point and normal estimates in Figure 10 further
confirm this. Adding an error-correction term to the hybrid
architecture improves the average estimation quality a little,
but also increases the variance of the predictions.

The visualizations for the other models (Figure 9 (d)-(f))
show that they, too, make good predictions in this example,
but simple and neural dyn have much more variance in the
direction of the predicted translation than hybrid or neural. It
is also interesting to see that neural, neural dyn and simple
all slightly overestimate the object rotation in comparison to
the mean ground truth movement, whereas physics slightly
underestimates it. Figure 10 also shows that simple is not
very accurate in predicting the contact points, confirming the
quantitative results found in TableII. As stated before, we
believe that this inaccuracy is compensated for by the predicted
vp.

H. Evaluation of the Error-Architecture

The previous results have shown that adding a learned
error-correction term to the output of the analytical model in
the hybrid architecture enables the network to improve over
the performance of the analytical model. The error model

TABLE IV: Evaluation of different architectures for predicting an error-
correction term. In contrast to error, error-grad allows the propagation of
gradients from the error-prediction module to the glimpse encoding. Error-
norm instead normalizes the push action to unit length before using it as input
to the error-prediction. Values shown are for training on the full training set
(190k examples). Results for hybrid and neural are repeated for reference.

trans rot pos [mm]

neural 17.4 (0.12)% 33.4 (0.28)% 0.31 (0.002)
hybrid 19.3 (0.13)% 36.1 (0.3)% 0.32 (0.002)

error 18.4 (0.12)% 34.6 (0.29)% 0.31 (0.002)
error-grad 17.9 (0.12)% 34.4 (0.29)% 0.29 (0.002)
error-norm 18.3 (0.12)% 35.3 (0.29)% 0.31 (0.002)

physics 18.95 (0.13)% 35.4 (0.3)% -
zero 2.95 (0.02)mm 1.9 (0.01) ◦ -

we analysed is able to outperform hybrid and the physics
baseline if the training set and the test set are similar (see
Experiment V-C).

In the following experiments, we evaluate different choices
we made for the architecture of error. We also compare the
ability of hybrid and error to compensate for larger errors in
the analytical model.

Evaluation of Different Architectures: As explained in Sec-
tion IV, we chose to block the propagation of gradients from
the error-correction module to the glimpse-encoding, because
we did not want the error-computation to interfere with the
prediction of the state representation. Here, we also evaluate
an architecture err-grad that does not block the gradient
propagation. This architecture manages to beat hybrid by an
even bigger margin, as shown in Table IV.

The downside of propagating the gradients becomes appar-
ent if we look at generalization to new pushing velocities:
While the predictions of error become worse with increasing
velocity, they still remain more accurate than the predictions
of neural, as illustrated in Figure 11. Error-grad on the other
hand performs even worse than the pure neural network. A
reason for this difference could be that error-grad relies more
strongly on the error-correction term than error. This allows
it to fit the training data more closely but at the same time

(a) Ground truth (b) Physics [18] (c) Hybrid (d) Simple

(e) Neural (f) Neural dyn (g) Error

Fig. 9: Qualitative evaluation on 200 repeated pushes with the same push configuration (angle, velocity, contact point). The green rectangles show the
(predicted) pose of the object after the push and the blue lines illustrate the object’s translation (for better visibility, we upscaled the lines by factor 5). The
thicker orange rectangle is the average ground truth pose of the object after the push. Red crosses indicate the predicted initial object positions. All models
predict the movement of the object and its initial position well, but cannot capture the multimodal distribution of the ground truth data.

(a) Contact points pre-
dicted by simple

(b) Contact points pre-
dicted by hybrid

(c) Contact points pre-
dicted by error

(d) Contact normal pre-
dicted by hybrid

(e) Contact normal pre-
dicted by error

Fig. 10: Predicted contact points and normals from 200 repeated pushes with the same push configuration (angle, velocity, contact point). The black point
marks the (average) ground truth contact point. While hybrid and error make fairly accurate predictions, simple predicts the contact points not on the edge
of the object but close to its center.

impedes generalization to novel actions.
As explained before, the reason for the decline in perfor-

mance when extrapolating is that the neural networks cannot
scale their predictions correctly according to the input velocity.
One possibility to make the error-prediction more robust to
higher input velocities is the architecture we call error-norm.
In this model, we scale the push action to unit length before
using it as input to the error-prediction. This makes the
error-prediction independent of the magnitude of the action,
while still giving it information about the push direction. The
resulting model performs only slightly worse than error inside
the training domain, but much better for extrapolation. It is
still worse than hybrid though, as it cannot properly adapt the
error-term to match higher velocities.

Compensation of Model Errors: Using the error-correction
term of course becomes much more interesting if the analytical

model is bad. To test how well the hybrid and error architec-
tures can compensate for wrong models, we manipulate the
friction parameter l by setting it to 1.5 or 3 times its real
value. The results are shown in Table V.

Wrong values of l are especially harmful for predicting the
rotation of the object, and both hybrid and error perform better
than the physics baseline under this condition. This shows that
the hybrid architecture has the ability to compensate for some
errors of the analytical model by manipulating the predicted
state representation. However, while hybrid performs similar
to error if l is only 1.5 times bigger than the correct value, it
cannot compensate as well for larger deviations in l. In this
case, the ability of error to directly alter the output of the
analytical model instead of only manipulating its input values
proves to be necessary for achieving good performance.

20

40

60

tr
an

s
[%

]

10 20 50 75 100 150
20

40

60

80

100

push velocity [mm
s

]

ro
t[

%
]

physics neural hybrid
error error-grad error-norm

Fig. 11: Evaluation of the different architectures for predicting an error-
correction term on unseen push velocities. All models were trained on push
velocity 20 mm

s
. None of the error-prediction models is as robust as hybrid to

higher input velocities. Error-norm performs best because its predicted error
terms are independent from the push velocity. Error-grad presumably relies
more on the error-prediction term than the other architectures and therefore
performs worst outside of the training domain.

TABLE V: Prediction errors of physics, hybrid and error when using a
manipulated friction parameter l. In contrast to physics, both neural networks
can compensate for the resulting error of the analytical model. Hybrid can
however only modify the input values to the analytical model, while error
can correct the model’s output directly and thus compensates the error of the
analytical model much better.

trans rot pos [mm]

1.5 · l
hybrid 20.7 (0.13)% 40.5 (0.32)% 0.3 (0.002)

error 19.2 (0.14)% 35.9 (0.3)% 0.25 (0.002)
physics 23.9 (0.15)% 46.1 (0.37)% -

3 · l
hybrid 25.1 (0.15)% 66.9 (0.45)% 0.31 (0.002)

error 19.6 (0.13)% 37.2 (0.3)% 0.32 (0.002)
physics 35.6 (0.23)% 80.1 (0.53)% -

The visualization in Figure 12 shows that both models
predicted incorrect contact points to counter the effect of the
higher friction value. This makes sense, since the location of
the contact point influences the tradeoff between how much
the object rotates and how much it translates. The predictions
from error deviate farther from the ground truth values, which
shows that the additional error-term does not prevent the model
from manipulating the input values to the analytical model.
Instead, it achieves its good results by combining both forms
of correction.

Summary: Adding an learned error-correction term to the
hybrid approach improves its ability to compensate for errors
in the analytical model. It however does not prevent prediction
of “wrong” state representations in such cases. For generaliza-
tion, we found it helpful to limit the error term’s dependency
on the magnitude of the pushing action and to stop gradient
flow from the error to the perception module.

VI. EXTENSION TO NON-TRIVIAL VIEWPOINTS

In the previous section, we used depth images that showed
a top-down view of the scene. This simplified the perception
part and allowed us to focus our experiments on comparing
the different architectures for learning the dynamics model.
In this Section, we briefly describe what changes when we
move away from the top-down perspective and show that the
proposed hybrid approach still works well on scenes that were
recorded from an arbitrary viewpoint.

A. Challenges

For describing the scene geometrically, we need three
coordinate frames, the world frame, the camera frame and a
frame that is attached to the object. In our rendered scenes, the
origin of the world frame is located at the centre of the table
and its x−y plane is aligned with the table surface. The object
frame is attached to the centre of mass of the object. In planar
pushing, we expect that the object only moves and rotates in
the x− y plane of its supporting surface and the x− y plane
of object and world frame are thus aligned. The movement of
the object is described relative to the world frame.

The camera-frame is located at the sensor position and its
z-axis points towards the origin of the world frame. Depth
images contain the distance of each visible point to the sensor
along the z axis, i.e. the z coordinates of said point in camera
frame. Finally, a 3D point (x y z)T in camera coordinates
is mapped to a pixel (u v)T by applying the perspective
projection with focal length f :(

u
v

)
=
f

z

(
x
y

)
(11)

In the special case of a top-down view, the x− y-plane of
world and camera frame are aligned, such that we can apply
the analytical model presented in Section III-A in both frames.
In addition, the measured depth (z in camera frame) of the
table and the object are independent of their x and y position.
This reduces the perspective projection to a scaling operation
with a constant factor and allowed us to predict the object
movement directly in pixel space. It also made segmenting
the object very easy, since it is associated with one specific
depth value.

Without the assumption of a top-down view, predicting
object movement in pixel-space becomes more challenging,
since the same movement will span more pixels the further
away the object is from the camera. In addition, perspective
distortion now affects the shape and size of the objects in pixel
space, which is e.g. relevant for localizing the object.

B. Network Architecture

We now describe the changes we made to the architectures
from Section V to adapt to new camera configurations. To be
able to relate pixel coordinates to 3d coordinates, we assume
that we have access to the parameters of the camera (focal
length) and the transform between camera and world frame.

(a) Physics (b) Hybrid (c) Error

(d) Contact points predicted by hy-
brid

(e) Contact points predicted by er-
ror

(f) Contact normal predicted by
hybrid

(g) Contact normal predicted by
error

Fig. 12: Predicted movement, contact points and normals from 200 repeated pushes when using a wrong friction parameter (1.5 · l). The black point marks
the (average) ground truth contact point. Both networks compensate for the wrong friction parameter by predicting the contact point in a slightly wrong
position, but the deviation from the ground truth is stronger for error, which also flips the direction of the predicted normal (this is however not relevant in
our implementation of the analytical model).

1) Perception: The perception part remains mostly as it was
before - we use the same architecture as shown in Figure 4.
Inspired by Byravan and Fox [5], we however extend the
input data from depth images to full 3d point clouds. These
point clouds are still image-shaped and can thus be treated
like normal images whose channels encode coordinate values
instead of colour or intensity.

As our architecture estimates the position of the object o in
pixel space (using spatial softmax), we use the given camera
parameters and transform to calculate the corresponding posi-
tion in 3d world-coordinates. For this we need the z coordinate
(depth) of the predicted pixel location, which we get by
interpolating between the values of the four pixels closest to
the predicted coordinates. Due to inaccuracies in the depth-
values and the projection matrix, this operation introduces an
error of about 0.3 mm, which we however consider negligible.

2) Prediction and Training: If we do not use a top-down
view of the scene, the question becomes relevant in which
coordinate-frame the network should predict the contact point
and the normal: pixel space, camera coordinates or world
coordinates. We decided to continue using pixel coordinates
since predictions in this space can be most directly related to
the input image and the predicted feature maps. To this end,
we also transform the action into pixel space before using it
(together with the glimpse encoding) as input for predicting
the contact point and normal. Since the analytical model can
only be used in the world frame where the movement of the
object is limited to the x − y plane, we finally transform

Fu
ll

an
al

yt
ic

al
 m

od
el

contact indicator
fc

2

256512

fc
1

fc
3

128l

glimpse
encoding co

nc
atto

 2
d

to
 3

d

action

contact point

normal

Full analytical model (hybrid)

Fig. 13: Prediction part of variant hybrid for non-trivial view-points. While
the analytical model operates in 3d world coordinates (indicated by w), the
contact point and normal are predicted in 2d pixel space (indicated by p).
Transforms from world coordinates to pixels and vice versa (red boxes) use
the given depth values, camera parameters and transform between camera and
world frame. Please refer to Figure 5 for a detailed explanation of graphical
elements.

the predicted contact point and normal from pixel-space to
world-coordinates. The resulting prediction part is illustrated
in Figure 13. Note that the overall architecture (number and
size of layers) is the same as for the top-down case (Figure 5).

We found training the model on data from arbitrary view-
points more challenging than in the top-down scenario. To
facilitate the process, we modified the network and the training
loss to treat contact prediction and velocity prediction sepa-
rately: Instead of using the predicted contact indicator s in
the analytical model, the network now predicts s as a separate
output. We interpret s as the probability that the pusher is in
contact with the object and place a cross-entropy loss on it.

For the predicted velocity, we only penalize errors if there was
(ground truth) contact. This prevents non-informative gradients
to the velocity-prediction if the object did not move and also
solves the problem that the network tries to compensate for
wrong velocity predictions by setting the contact estimate to
zero.

At test-time, the predicted contact indicator is multiplied
with the predicted object movement from the analytical model
to get the final velocity prediction.

The new loss for a single training example looks as follows:
Let ŝ, v̂o and ô denote the predicted and s, vo, o the real
contact indicator, object movement and position. w are the
network weights and νo = [vox, voy] denotes linear object
velocity.

L(s, v̂o, ô, s,vo,o) = trans+ rot+ pos+ . . .

. . . λ1 contact+ λ2
∑

w
‖ w ‖

trans = s ‖ν̂o − νo‖
rot = s 180π |ω − ω̂|
pos =‖ o− ô ‖

contact = −(s log(ŝ) + (1− s) log(1− ŝ))

To ensure that all components of the loss are of the
same magnitude, we compute translation and position error
in millimetres and rotation in degree. We set λ1 = 10 and
λ2 = 0.001.

C. Evaluation

To show that our approach is not dependent on the top-down
perspective, we train and evaluate it on images collected from
a different viewpoint: The camera is located at

(
0 − 0.25 0.4

)
in world-coordinates, which corresponds to a more natural
perspective where the viewer stands in front of the table
instead of hovering above the table centre. Figure 14 shows
the depth channel of three examples.

Data: As in Section V, we use a dataset that contains
all objects from the MIT Push dataset and all pushes with
velocity 20mms for evaluating on this new viewpoint. We split
it randomly into about 190k training examples and about 37k
examples for testing.

Results: After 75k training steps, the hybrid model trained
on the new viewpoint performs very similar to the one from
the top-down case: 19.4% translation error and 37.2% error
in rotation, as compared to 19.3% and 36.1% in the top-down
case. The only notable difference is that the error in predicted
position climbs from 0.32 mm to 1.12 mm. This can be par-
tially explained by the inaccuracy introduced when converting
from pixel coordinates to world coordinates. Another problem
could be perspective distortion, as it influences shape and size
of the objects depending on how close they are to the camera.
In relation to the size of the object, an error of around 1 mm
is however still very small.

Summary: The accuracy of our proposed method is not
harmed by using a non-trivial camera viewpoint. We however
require that the transform between world and camera coordi-
nates as well as the camera parameters are known.

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of predicting
the effect of physical interaction from raw sensory data. We
compared a pure neural network approach to a hybrid approach
that uses a neural network for perception and an analytical
model for prediction. Our test bed involved pushing of planar
objects on a surface - a non-linear, discontinuous manipulation
task for which we have both, millions of data points and an
analytical model.

We observed two main advantages of the hybrid architec-
ture. Compared to the pure neural network, it significantly (i)
reduces required training data and (ii) improves generalization
to novel physical interaction. The analytical model aides
generalization by limiting the ability of the hybrid architecture
to overfit to the training data and by providing multiplication
operations for scaling the output according to the input action
and contact indicator. This kind of mathematical operation is
hard to learn for fully-connected architectures and requires
many parameters and diverse training examples for covering
a large value range. The drawback of the hybrid approach is
that it cannot as easily improve on the performance of the
underlying analytical model.

The pure neural network on the other hand can beat both,
the hybrid approach and the analytical model (with ground
truth input values) if trained on enough data. This however
only holds when we evaluate on actions encountered during
training and does not transfer to new push configurations,
velocities or object shapes. The challenge in these cases is that
the distribution of the training and test data differ significantly.

To enable the hybrid approach to improve more on the
prediction accuracy of its analytical model, we experimented
with learning an error-correction term that is added to the
prediction of the analytical model. These error models are
almost as data-efficient as hybrid and can to some extend
retain the ability to generalize to different test data provided
by the analytical model. They however require more diversity
in the training data than hybrid to avoid overfitting. Our
experiments with a wrong analytical model also showed that
the error models can compensate for errors of the model much
better than hybrid, which can only influence the prediction by
manipulating the input values of the analytical model.

The last architecture, simple, showed that combining learn-
ing and analytical models is not automatically guaranteed to
lead to good performance. By replacing the first stage of the
analytical model with a neural network, we instead combined
the disadvantages of both approaches: The architecture needs
lots of training data and does not generalize well to new
pushes, because it misses the part of the analytical model that
explains the influence of the pushing action on the resulting
object velocity. In contrast to the pure neural network, it

Fig. 14: Example depth images recorded from a non-top-down viewpoint. The depth values increase towards the back of the scene and the perspective
transform affects the shape of the objects.

however also cannot improve much on the performance of
the analytical model.

A limitation of the presented hybrid approach is that it may
be hard to find an accurate analytical model for some physical
processes and that not all existing models are suitable for our
approach, as they e.g. need to be differentiable everywhere.
Especially the switching dynamics encountered when the con-
tact situation changes proved to be challenging and more work
needs to be done in this direction. If no analytical model is
available, learning the predictive model with a neural network
is still a very good option.

In perception on the other hand, the strengths of neural
networks can be well exploited to extract the input parameters
of the analytical model from raw sensory data. By training
end-to-end through a given model, we can avoid the effort
of labeling data with the ground truth state. Our experiments
also showed that training end-to-end allows the hybrid models
to compensate for smaller errors in the analytical model by
adjusting the predicted input values.

Using the state representation of the analytical model for
the hybrid architecture has the advantage that the predictions
of the network can be visualized and interpreted. This is not
easily possible for the intermediate representations learned in
the pure neural network. Our results however suggest that the
pure neural network benefits from being free to chose its own
state representation, as learning the dynamics model from the
ground truth state representation (neural dyn) lead to worse
prediction results.

In the future, we want to extend our work to more complex
perception problems, like training on RGB images or scenes
with multiple objects. An interesting question is if perception
on point clouds could be facilitated by using methods like
pointnet++ [23] that are specifically designed for this type of
input data instead of treating the point cloud like a normal
image.

A logical next step is also using our hybrid models for
predicting more than one step into the future. Working on
sequences makes it for example possible to guide learning by
enforcing constraints like temporal consistency or to exploit
temporal cues like optical flow. The model could also be used
in a filtering scenario to track the state of an object and at the
same time infer latent variables of the system like the friction

coefficients. Similarly, we can use the learned model to plan
and execute robot actions using model predictive control.

ACKNOWLEDGMENTS

This work was supported by the Max Planck Society.
The authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for supporting
Alina Kloss.

NOTES

1We also evaluated two different prediction horizons but found no signif-
icant effect on the performance.

2We provide these inputs as friction related information cannot be obtained
from single images. Estimation from sequences is considered future work.

REFERENCES

[1] M. Abadi et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and
S. Levine. Learning to poke by poking: Experiential
learning of intuitive physics. In Advances in Neural
Inform. Process. Syst., pages 5074–5082, 2016.

[3] M. Bauza and A. Rodriguez. A probabilistic data-
driven model for planar pushing. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 3008–3015, May 2017. doi: 10.1109/ICRA.2017.
7989345.

[4] D. Belter, M. Kopicki, S. Zurek, and J. Wyatt. Kinemat-
ically optimised predictions of object motion. In Intelli-
gent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 4422–4427. IEEE,
2014.

[5] A. Byravan and D. Fox. Se3-nets: Learning rigid body
motion using deep neural networks. In Robotics and
Automation (ICRA), 2017 IEEE Int. Conf. on, pages 173–
180. IEEE, 2017.

[6] A. Byravan, F. Leeb, F. Meier, and D. Fox. Se3-pose-
nets: Structured deep dynamics models for visuomotor
planning and control. to appear at Robotics and Automa-
tion (ICRA), 2018 IEEE Int. Conf. on, abs/1710.00489,
2017.

[7] J. Degrave, M. Hermans, J. Dambre, and F. Wyffels.
A differentiable physics engine for deep learning in
robotics. CoRR, abs/1611.01652, 2016.

[8] C. Finn, I. Goodfellow, and S. Levine. Unsupervised
learning for physical interaction through video predic-
tion. In Advances in Neural Inform. Process. Syst. 29,
pages 64–72. 2016.

[9] S. Goyal, A. Ruina, and J. Papadopoulos. Planar sliding
with dry friction part 1. limit surface and moment func-
tion. Wear, 143(2):307 – 330, 1991. ISSN 0043-1648.
doi: https://doi.org/10.1016/0043-1648(91)90104-3.

[10] S. Hong Lee and M. Cutkosky. Fixture planning
with friction. Journal of Engineering for Industry,
113, 08 1991. URL http://manufacturingscience.
asmedigitalcollection.asme.org/article.aspx?articleid=
1447458.

[11] R. D. Howe and M. R. Cutkosky. Practical force-motion
models for sliding manipulation. The International
Journal of Robotics Research, 15(6):557–572, 1996. doi:
10.1177/027836499601500603.

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In Proc. 32nd Int. Conf. on Machine Learning,
volume 37, pages 448–456, 07–09 Jul 2015.

[13] R. Jonschkowski and O. Brock. Learning state rep-
resentations with robotic priors. Autonomous Robots,
39(3):407–428, Oct 2015. ISSN 1573-7527. doi:
10.1007/s10514-015-9459-7.

[14] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[15] M. Kopicki, S. Zurek, R. Stolkin, T. Moerwald, and
J. L. Wyatt. Learning modular and transferable forward
models of the motions of push manipulated objects.
Autonomous Robots, 41(5):1061–1082, 6 2017. doi:
10.1007/s10514-016-9571-3.

[16] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. J. Mach. Learning
Research, 17(39):1–40, 2016.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015.

[18] K. M. Lynch, H. Maekawa, and K. Tanie. Manipulation
and active sensing by pushing using tactile feedback.
In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, volume 1, pages 416–421, Jul 1992. doi:
10.1109/IROS.1992.587370.

[19] G. Martius and C. H. Lampert. Extrapolation and
learning equations. CoRR, abs/1610.02995, 2016. URL
http://arxiv.org/abs/1610.02995.

[20] M. T. Mason. Mechanics and planning of manipula-
tor pushing operations. The International Journal of
Robotics Research, 5(3):53–71, 1986.

[21] T. Meriçli, M. Veloso, and H. L. Akın. Push-
manipulation of complex passive mobile objects using
experimentally acquired motion models. Autonomous

Robots, 38(3):317–329, 2015.
[22] D. Nguyen-Tuong and J. Peters. Using model knowledge

for learning inverse dynamics. In Robotics and Automa-
tion (ICRA), 2010 IEEE Int. Conf. on, pages 2677–2682.
IEEE, 2010.

[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a
metric space. In Advances in Neural Inform. Process.
Syst., pages 5105–5114, 2017.

[24] N. Watters, A. Tacchetti, T. Weber, R. Pascanu,
P. Battaglia, and D. Zoran. Visual Interaction Networks.
ArXiv e-prints, June 2017.

[25] J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum.
Learning to see physics via visual de-animation. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 152–
163. Curran Associates, Inc., 2017.

[26] K. T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez. More
than a million ways to be pushed. a high-fidelity exper-
imental dataset of planar pushing. In 2016 IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), pages
30–37, Oct 2016. doi: 10.1109/IROS.2016.7758091.

[27] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking gener-
alization. CoRR, abs/1611.03530, 2016.

[28] L. Zhang and J. C. Trinkle. The application of particle
filtering to grasping acquisition with visual occlusion and
tactile sensing. In 2012 IEEE Int. Conf. on Robotics and
Automation, pages 3805–3812, May 2012.

[29] J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason.
A convex polynomial force-motion model for planar
sliding: Identification and application. In Robotics and
Automation (ICRA), 2016 IEEE International Conference
on, pages 372–377. IEEE, 2016.

http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1447458
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1447458
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1447458
http://arxiv.org/abs/1610.02995

	I Introduction
	I-A Contributions
	I-B Outline

	II Related Work
	II-A Models for Pushing
	II-B Learning Dynamics Based on Raw Sensory Data
	II-C Combining Analytical Models and Learning

	III Problem Statement
	III-A An Analytical Model of Planar Pushing
	III-B Data

	IV Combining Neural Networks and Analytical Models
	IV-A Perception
	IV-B Prediction
	IV-C Training

	V Evaluating Generalization
	V-A Baselines
	V-B Metrics
	V-C Data Efficiency
	V-D Generalization to New Pushing Angles and Contact Points
	V-E Generalization to Different Push Velocities
	V-F Generalization to Different Objects
	V-G Visualizations
	V-H Evaluation of the Error-Architecture

	VI Extension to Non-Trivial Viewpoints
	VI-A Challenges
	VI-B Network Architecture
	VI-B1 Perception
	VI-B2 Prediction and Training

	VI-C Evaluation

	VII Conclusion and Future Work

