Header logo is am


2015


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

link (url) DOI [BibTex]

2015

link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

[BibTex]

[BibTex]

2012


Thumb xl screen shot 2015 08 23 at 13.56.29
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

DOI [BibTex]

2012

DOI [BibTex]


Thumb xl sankaran iros 20121
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl bottlehandovergrasp
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


no image
Movement Segmentation and Recognition for Imitation Learning

Meier, F., Theodorou, E., Schaal, S.

In Seventeenth International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, Fifteenth International Conference on Artificial Intelligence and Statistics , April 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

Project Page [BibTex]


no image
Inverse dynamics with optimal distribution of contact forces for the control of legged robots

Righetti, L., Schaal, S.

In Dynamic Walking 2012, Pensacola, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Encoding of Periodic and their Transient Motions by a Single Dynamic Movement Primitive

Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 57-64, IEEE, Osaka, Japan, November 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Robotic Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In ICML’12 Proceedings of the 29th International Coference on International Conference on Machine Learning, pages: 49-50, Edinburgh, Scotland, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Quadratic programming for inverse dynamics with optimal distribution of contact forces

Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 538-543, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In addition the controller satisfies linear equality and inequality constraints in the contact forces and the commands such as torque limits, unilateral contacts or friction cones limits. The originality of our approach resides in the formulation of the problem as a quadratic program where we only need to solve for the control commands and where the contact forces are optimized implicitly. Furthermore, we do not need a structured representation of the dynamics of the robot (i.e. an explicit computation of the inertia matrix). It is in contrast with existing methods based on quadratic programs. The controller is then robust to uncertainty in the estimation of the dynamics model and the optimization is fast enough to be implemented in high bandwidth torque control loops that are increasingly available on humanoid platforms. We demonstrate properties of our controller with simulations of a human size humanoid robot.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

[BibTex]

2011

[BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

PDF [BibTex]

PDF [BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

link (url) [BibTex]

link (url) [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

link (url) [BibTex]

link (url) [BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

[BibTex]

[BibTex]


no image
Understanding haptics by evolving mechatronic systems

Loeb, G. E., Tsianos, G.A., Fishel, J.A., Wettels, N., Schaal, S.

Progress in Brain Research, 192, pages: 129, 2011 (article)

[BibTex]

[BibTex]


no image
Movement segmentation using a primitive library

Meier, F., Theodorou, E., Stulp, F., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), Sept. 25-30, San Francisco, CA, 2011, clmc (inproceedings)

Abstract
Segmenting complex movements into a sequence of primitives remains a difficult problem with many applications in the robotics and vision communities. In this work, we show how the movement segmentation problem can be reduced to a sequential movement recognition problem. To this end, we reformulate the orig-inal Dynamic Movement Primitive (DMP) formulation as a linear dynamical sys-tem with control inputs. Based on this new formulation, we develop an Expecta-tion-Maximization algorithm to estimate the duration and goal position of a par-tially observed trajectory. With the help of this algorithm and the assumption that a library of movement primitives is present, we present a movement seg-mentation framework. We illustrate the usefulness of the new DMP formulation on the two applications of online movement recognition and movement segmen-tation.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning to grasp under uncertainty

Stulp, F., Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present an approach that enables robots to learn motion primitives that are robust towards state estimation uncertainties. During reaching and preshaping, the robot learns to use fine manipulation strategies to maneuver the object into a pose at which closing the hand to perform the grasp is more likely to succeed. In contrast, common assumptions in grasp planning and motion planning for reaching are that these tasks can be performed independently, and that the robot has perfect knowledge of the pose of the objects in the environment. We implement our approach using Dynamic Movement Primitives and the probabilistic model-free reinforcement learning algorithm Policy Improvement with Path Integrals (PI2 ). The cost function that PI2 optimizes is a simple boolean that penalizes failed grasps. The key to acquiring robust motion primitives is to sample the actual pose of the object from a distribution that represents the state estimation uncertainty. During learning, the robot will thus optimize the chance of grasping an object from this distribution, rather than at one specific pose. In our empirical evaluation, we demonstrate how the motion primitives become more robust when grasping simple cylindrical objects, as well as more complex, non-convex objects. We also investigate how well the learned motion primitives generalize towards new object positions and other state estimation uncertainty distributions.

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

link (url) DOI [BibTex]

2008

link (url) DOI [BibTex]


no image
Adaptation to a sub-optimal desired trajectory

M. Mistry, E. A. G. L. T. Y. S. S. M. K.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

PDF [BibTex]

PDF [BibTex]


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Operational space control: A theoretical and emprical comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)

Abstract
Dexterous manipulation with a highly redundant movement system is one of the hallmarks of hu- man motor skills. From numerous behavioral studies, there is strong evidence that humans employ compliant task space control, i.e., they focus control only on task variables while keeping redundant degrees-of-freedom as compliant as possible. This strategy is robust towards unknown disturbances and simultaneously safe for the operator and the environment. The theory of operational space con- trol in robotics aims to achieve similar performance properties. However, despite various compelling theoretical lines of research, advanced operational space control is hardly found in actual robotics imple- mentations, in particular new kinds of robots like humanoids and service robots, which would strongly profit from compliant dexterous manipulation. To analyze the pros and cons of different approaches to operational space control, this paper focuses on a theoretical and empirical evaluation of different methods that have been suggested in the literature, but also some new variants of operational space controllers. We address formulations at the velocity, acceleration and force levels. First, we formulate all controllers in a common notational framework, including quaternion-based orientation control, and discuss some of their theoretical properties. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm with several benchmark tasks. As an aside, we also introduce a novel parameter estimation algorithm for rigid body dynamics, which ensures physical consistency, as this issue was crucial for our successful robot implementations. Our extensive empirical results demonstrate that one of the simplified acceleration-based approaches can be advantageous in terms of task performance, ease of parameter tuning, and general robustness and compliance in face of inevitable modeling errors.

link (url) [BibTex]

link (url) [BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Behavioral experiments on reinforcement learning in human motor control

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Reinforcement learning (RL) - learning solely based on reward or cost feedback - is widespread in robotics control and has been also suggested as computational model for human motor control. In human motor control, however, hardly any experiment studied reinforcement learning. Here, we study learning based on visual cost feedback in a reaching task and did three experiments: (1) to establish a simple enough experiment for RL, (2) to study spatial localization of RL, and (3) to study the dependence of RL on the cost function. In experiment (1), subjects sit in front of a drawing tablet and look at a screen onto which the drawing pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. We choose as cost the squared distance between target and virtual pen position at the target line. Above a threshold value, the cost was fixed at this value. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. As result, subjects could learn the bias, and thus, showed reinforcement learning. In experiment (2), we randomly altered the target position between three different locations (three different directions from start point: -45, 0, 45). For each direction, we chose a different bias. As result, subjects learned all three bias values simultaneously. Thus, RL can be spatially localized. In experiment (3), we varied the sensitivity of the cost function by multiplying the squared distance with a constant value C, while keeping the same cut-off threshold. As in experiment (2), we had three target locations. We assigned to each location a different C value (this assignment was randomized between subjects). Since subjects learned the three locations simultaneously, we could directly compare the effect of the different cost functions. As result, we found an optimal C value; if C was too small (insensitive cost), learning was slow; if C was too large (narrow cost valley), the exploration time was longer and learning delayed. Thus, reinforcement learning in human motor control appears to be sen

[BibTex]

[BibTex]


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

link (url) [BibTex]

link (url) [BibTex]


no image
Computational model for movement learning under uncertain cost

Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
Stochastic optimal control is a framework for computing control commands that lead to an optimal behavior under a given cost. Despite the long history of optimal control in engineering, it has been only recently applied to describe human motion. So far, stochastic optimal control has been mainly used in tasks that are already learned, such as reaching to a target. For learning, however, there are only few cases where optimal control has been applied. The main assumptions of stochastic optimal control that restrict its application to tasks after learning are the a priori knowledge of (1) a quadratic cost function (2) a state space model that captures the kinematics and/or dynamics of musculoskeletal system and (3) a measurement equation that models the proprioceptive and/or exteroceptive feedback. Under these assumptions, a sequence of control gains is computed that is optimal with respect to the prespecified cost function. In our work, we relax the assumption of the a priori known cost function and provide a computational framework for modeling tasks that involve learning. Typically, a cost function consists of two parts: one part that models the task constraints, like squared distance to goal at movement endpoint, and one part that integrates over the squared control commands. In learning a task, the first part of this cost function will be adapted. We use an expectation-maximization scheme for learning: the expectation step optimizes the task constraints through gradient descent of a reward function and the maximizing step optimizes the control commands. Our computational model is tested and compared with data given from a behavioral experiment. In this experiment, subjects sit in front of a drawing tablet and look at a screen onto which the drawing-pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. Therefore the cost is a function of this bias. The subjects were asked to reach to the target and minimize this cost over trials. In this behavioral experiment, subjects could learn the bias and thus showed reinforcement learning. With our computational model, we could model the learning process over trials. Particularly, the dependence on parameters of the reward function (Gaussian width) and the modulation of movement variance over time were similar in experiment and model.

[BibTex]

[BibTex]


no image
Optimization strategies in human reinforcement learning

Hoffmann, H., Theodorou, E., Schaal, S.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

PDF [BibTex]

PDF [BibTex]


no image
A Bayesian approach to empirical local linearizations for robotics

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)

Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a ``reasonable'' linear regime of the system, which can be defined from the Hessian at the point of the linearization -- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a ``reasonable'' local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. This approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.

link (url) [BibTex]

link (url) [BibTex]