Header logo is am


373 results (BibTeX)

1996


no image
A Kendama learning robot based on bi-directional theory

Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., Kawato, M.

Neural Networks, 9(8):1281-1302, 1996, clmc (article)

Abstract
A general theory of movement-pattern perception based on bi-directional theory for sensory-motor integration can be used for motion capture and learning by watching in robotics. We demonstrate our methods using the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has a very similar kinematic structure to the human arm. Three ingredients have to be integrated for the successful execution of this task. The ingredients are (1) to extract via-points from a human movement trajectory using a forward-inverse relaxation model, (2) to treat via-points as a control variable while reconstructing the desired trajectory from all the via-points, and (3) to modify the via-points for successful execution. In order to test the validity of the via-point representation, we utilized a numerical model of the SARCOS arm, and examined the behavior of the system under several conditions.

link (url) [BibTex]

1996

link (url) [BibTex]


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

link (url) [BibTex]

link (url) [BibTex]


no image
One-handed juggling: A dynamical approach to a rhythmic movement task

Schaal, S., Sternad, D., Atkeson, C. G.

Journal of Motor Behavior, 28(2):165-183, 1996, clmc (article)

Abstract
The skill of rhythmic juggling a ball on a racket is investigated from the viewpoint of nonlinear dynamics. The difference equations that model the dynamical system are analyzed by means of local and non-local stability analyses. These analyses yield that the task dynamics offer an economical juggling pattern which is stable even for open-loop actuator motion. For this pattern, two types of pre dictions are extracted: (i) Stable periodic bouncing is sufficiently characterized by a negative acceleration of the racket at the moment of impact with the ball; (ii) A nonlinear scaling relation maps different juggling trajectories onto one topologically equivalent dynamical system. The relevance of these results for the human control of action was evaluated in an experiment where subjects performed a comparable task of juggling a ball on a paddle. Task manipulations involved different juggling heights and gravity conditions of the ball. The predictions were confirmed: (i) For stable rhythmic performance the paddle's acceleration at impact is negative and fluctuations of the impact acceleration follow predictions from global stability analysis; (ii) For each subject, the realizations of juggling for the different experimental conditions are related by the scaling relation. These results allow the conclusion that for the given task, humans reliably exploit the stable solutions inherent to the dynamics of the task and do not overrule these dynamics by other control mechanisms. The dynamical scaling serves as an efficient principle to generate different movement realizations from only a few parameter changes and is discussed as a dynamical formalization of the principle of motor equivalence.

link (url) [BibTex]

link (url) [BibTex]


no image
A kendama learning robot based on a dynamic optimiation principle

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Rieka, O., Nakano, E., Wada, Y., Kawato, M.

In Preceedings of the International Conference on Neural Information Processing, pages: 938-942, Hong Kong, September 1996, clmc (inproceedings)

[BibTex]

[BibTex]

1995


no image
Batting a ball: Dynamics of a rhythmic skill

Sternad, D., Schaal, S., Atkeson, C. G.

In Studies in Perception and Action, pages: 119-122, (Editors: Bardy, B.;Bostma, R.;Guiard, Y.), Erlbaum, Hillsdayle, NJ, 1995, clmc (inbook)

[BibTex]

1995

[BibTex]


no image
Memory-based neural networks for robot learning

Atkeson, C. G., Schaal, S.

Neurocomputing, 9, pages: 1-27, 1995, clmc (article)

Abstract
This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task. Keywords: memory-based, robot learning, locally weighted regression, nearest neighbor, local models.

link (url) [BibTex]

link (url) [BibTex]


no image
A kendama learning robot based on a dynamic optimization theory

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., Kawato, M.

In Preceedings of the 4th IEEE International Workshop on Robot and Human Communication (RO-MAN’95), pages: 327-332, Tokyo, July 1995, clmc (inproceedings)

[BibTex]

[BibTex]

1994


no image
Robot juggling: An implementation of memory-based learning

Schaal, S., Atkeson, C. G.

Control Systems Magazine, 14(1):57-71, 1994, clmc (article)

Abstract
This paper explores issues involved in implementing robot learning for a challenging dynamic task, using a case study from robot juggling. We use a memory-based local modeling approach (locally weighted regression) to represent a learned model of the task to be performed. Statistical tests are given to examine the uncertainty of a model, to optimize its prediction quality, and to deal with noisy and corrupted data. We develop an exploration algorithm that explicitly deals with prediction accuracy requirements during exploration. Using all these ingredients in combination with methods from optimal control, our robot achieves fast real-time learning of the task within 40 to 100 trials.

link (url) [BibTex]

1994

link (url) [BibTex]


no image
Robot learning by nonparametric regression

Schaal, S., Atkeson, C. G.

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS’94), pages: 478-485, Munich Germany, 1994, clmc (inproceedings)

Abstract
We present an approach to robot learning grounded on a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, i.e., the (hyper-) tangent planes at every query point. Such a model, however, is only generated when a query is performed and is not retained. This is in contrast to other methods using a finite set of linear models to accomplish a piecewise linear model. Architectural parameters of our approach, such as distance metrics, are also a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: Within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

[BibTex]

[BibTex]


no image
Assessing the quality of learned local models

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 6, pages: 160-167, (Editors: Cowan, J.;Tesauro, G.;Alspector, J.), Morgan Kaufmann, San Mateo, CA, 1994, clmc (inproceedings)

Abstract
An approach is presented to learning high dimensional functions in the case where the learning algorithm can affect the generation of new data. A local modeling algorithm, locally weighted regression, is used to represent the learned function. Architectural parameters of the approach, such as distance metrics, are also localized and become a function of the query point instead of being global. Statistical tests are given for when a local model is good enough and sampling should be moved to a new area. Our methods explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a "center of exploration" and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach with simulation results and results from a real robot learning a complex juggling task.

link (url) [BibTex]

link (url) [BibTex]


no image
Memory-based robot learning

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 2928-2933, San Diego, CA, 1994, clmc (inproceedings)

Abstract
We present a memory-based local modeling approach to robot learning using a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, the (hyper-) tangent planes at every query point. This is in contrast to other methods using a finite set of linear models to accomplish a piece-wise linear model. Architectural parameters of our approach, such as distance metrics, are a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

[BibTex]

[BibTex]


no image
Nonparametric regression for learning

Schaal, S.

In Conference on Adaptive Behavior and Learning, Center of Interdisciplinary Research (ZIF) Bielefeld Germany, also technical report TR-H-098 of the ATR Human Information Processing Research Laboratories, 1994, clmc (inproceedings)

Abstract
In recent years, learning theory has been increasingly influenced by the fact that many learning algorithms have at least in part a comprehensive interpretation in terms of well established statistical theories. Furthermore, with little modification, several statistical methods can be directly cast into learning algorithms. One family of such methods stems from nonparametric regression. This paper compares nonparametric learning with the more widely used parametric counterparts and investigates how these two families differ in their properties and their applicability. 

link (url) [BibTex]

link (url) [BibTex]

1993


no image
Learning passive motor control strategies with genetic algorithms

Schaal, S., Sternad, D.

In 1992 Lectures in complex systems, pages: 913-918, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
This study investigates learning passive motor control strategies. Passive control is understood as control without active error correction; the movement is stabilized by particular properties of the controlling dynamics. We analyze the task of juggling a ball on a racket. An approximation to the optimal solution of the task is derived by means of optimization theory. In order to model the learning process, the problem is coded for a genetic algorithm in representations without sensory or with sensory information. For all representations the genetic algorithm is able to find passive control strategies, but learning speed and the quality of the outcome are significantly different. A comparison with data from human subjects shows that humans seem to apply yet different movement strategies to the ones proposed. For the feedback representation some implications arise for learning from demonstration.

link (url) [BibTex]

1993

link (url) [BibTex]


no image
A genetic algorithm for evolution from an ecological perspective

Sternad, D., Schaal, S.

In 1992 Lectures in Complex Systems, pages: 223-231, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
In the population model presented, an evolutionary dynamic is explored which is based on the operator characteristics of genetic algorithms. An essential modification in the genetic algorithms is the inclusion of a constraint in the mixing of the gene pool. The pairing for the crossover is governed by a selection principle based on a complementarity criterion derived from the theoretical tenet of perception-action (P-A) mutuality of ecological psychology. According to Swenson and Turvey [37] P-A mutuality underlies evolution and is an integral part of its thermodynamics. The present simulation tested the contribution of P-A-cycles in evolutionary dynamics. A numerical experiment compares the population's evolution with and without this intentional component. The effect is measured in the difference of the rate of energy dissipation, as well as in three operationalized aspects of complexity. The results support the predicted increase in the rate of energy dissipation, paralleled by an increase in the average heterogeneity of the population. Furthermore, the spatio-temporal evolution of the system is tested for the characteristic power-law relations of a nonlinear system poised in a critical state. The frequency distribution of consecutive increases in population size shows a significantly different exponent in functional relationship.

[BibTex]

[BibTex]


no image
Roles for memory-based learning in robotics

Atkeson, C. G., Schaal, S.

In Proceedings of the Sixth International Symposium on Robotics Research, pages: 503-521, Hidden Valley, PA, 1993, clmc (inproceedings)

[BibTex]

[BibTex]


no image
Design concurrent calculation: A CAD- and data-integrated approach

Schaal, S., Ehrlenspiel, K.

Journal of Engineering Design, 4, pages: 71-85, 1993, clmc (article)

Abstract
Besides functional regards, product design demands increasingly more for further reaching considerations. Quality alone cannot suffice anymore to compete in the market; design for manufacturability, for assembly, for recycling, etc., are well-known keywords. Those can largely be reduced to the necessity of design for costs. This paper focuses on a CAD-based approach to design concurrent calculation. It will discuss how, in the meantime well-established, tools like feature technology, knowledge-based systems, and relational databases can be blended into one coherent concept to achieve an entirely CAD- and data-integrated cost information tool. This system is able to extract data from the CAD-system, combine it with data about the company specific manufacturing environment, and subsequently autonomously evaluate manufacturability aspects and costs of the given CAD-model. Within minutes the designer gets quantitative in-formation about the major cost sources of his/her design. Additionally, some alternative methods for approximating manu-facturing times from empirical data, namely neural networks and local weighted regression, are introduced.

[BibTex]

[BibTex]


no image
Open loop stable control strategies for robot juggling

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 913-918, Piscataway, NJ: IEEE, Georgia, Atlanta, May 2-6, 1993, clmc (inproceedings)

Abstract
In a series of case studies out of the field of dynamic manipulation (Mason, 1992), different principles for open loop stable control are introduced and analyzed. This investigation may provide some insight into how open loop control can serve as a useful foundation for closed loop control and, particularly, what to focus on in learning control. 

link (url) [BibTex]

link (url) [BibTex]

1992


no image
Ins CAD integrierte Kostenkalkulation (CAD-Integrated Cost Calculation)

Ehrlenspiel, K., Schaal, S.

Konstruktion 44, 12, pages: 407-414, 1992, clmc (article)

[BibTex]

1992

[BibTex]


no image
Integrierte Wissensverarbeitung mit CAD am Beispiel der konstruktionsbegleitenden Kalkulation (Ways to smarter CAD Systems)

Schaal, S.

Hanser 1992. (Konstruktionstechnik München Band 8). Zugl. München: TU Diss., München, 1992, clmc (book)

[BibTex]

[BibTex]


no image
Informationssysteme mit CAD (Information systems within CAD)

Schaal, S.

In CAD/CAM Grundlagen, pages: 199-204, (Editors: Milberg, J.), Springer, Buchreihe CIM-TT. Berlin, 1992, clmc (inbook)

[BibTex]

[BibTex]


no image
What should be learned?

Schaal, S., Atkeson, C. G., Botros, S.

In Proceedings of Seventh Yale Workshop on Adaptive and Learning Systems, pages: 199-204, New Haven, CT, May 20-22, 1992, clmc (inproceedings)

[BibTex]

[BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]


no image
Cerebral or spinal level interaction of rhythmic and discrete movements during two-joint arm task

Mohajerian, P., Mistry, M., Schaal, S.

Journal of Neurophysiology, clmc (article)

[BibTex]