Header logo is am


283 results (BibTeX)

2017


no image
A New Data Source for Inverse Dynamics Learning

Kappler, D., Meier, F., Ratliff, N., Schaal, S.

In International Conference on Intelligent Robots and Systems (IROS) 2017, International Conference on Intelligent Robots and Systems, September 2017 (inproceedings)

[BibTex]

2017

[BibTex]


no image
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of Machine Learning Research, 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference) Accepted

PDF [BibTex]

PDF [BibTex]


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Conference on Decision and Control, December 2017 (conference) Accepted

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

arXiv PDF Project Page [BibTex]

arXiv PDF Project Page [BibTex]


Thumb xl screen shot 2017 08 01 at 15.41.10
On the relevance of grasp metrics for predicting grasp success

Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.

In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted

Abstract
We aim to reliably predict whether a grasp on a known object is successful before it is executed in the real world. There is an entire suite of grasp metrics that has already been developed which rely on precisely known contact points between object and hand. However, it remains unclear whether and how they may be combined into a general purpose grasp stability predictor. In this paper, we analyze these questions by leveraging a large scale database of simulated grasps on a wide variety of objects. For each grasp, we compute the value of seven metrics. Each grasp is annotated by human subjects with ground truth stability labels. Given this data set, we train several classification methods to find out whether there is some underlying, non-trivial structure in the data that is difficult to model manually but can be learned. Quantitative and qualitative results show the complexity of the prediction problem. We found that a good prediction performance critically depends on using a combination of metrics as input features. Furthermore, non-parametric and non-linear classifiers best capture the structure in the data.

[BibTex]

[BibTex]


Thumb xl pilqr cover
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.

International Conference on Machine Learning (ICML) 2017, International Conference on Machine Learning (ICML), August 2017 (conference)

pdf video [BibTex]

pdf video [BibTex]


no image
Local Bayesian Optimization of Motor Skills

Akrour, R., Sorokin, D., Peters, J., Neumann, G.

Proceedings of the 34th International Conference on Machine Learning (ICML 2017), 70, pages: 41-50, (Editors: Doina Precup and Yee Whye Teh), PMLR, 2017 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., M., G.

Proceedings of the 7th Graz Brain-Computer Interface Conference (GBCIC 2017), pages: 160-164, (Editors: Gernot R. Müller-Putz, David Steyrl, Selina C. Wriessnegger, Reinhold Scherer), Verlag der Technischen Universität Graz, 2017 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., M., G.

Proceedings of the 7th Graz Brain-Computer Interface Conference (GBCIC 2017), pages: 131-136, (Editors: Gernot R. Müller-Putz, David Steyrl, Selina C. Wriessnegger, Reinhold Scherer), Verlag der Technischen Universität Graz, 2017 (conference)

DOI [BibTex]

DOI [BibTex]


Thumb xl learning ct block diagram v2
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2017 (conference)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl cover
Path Integral Guided Policy Search

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., Levine, S.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), April 2017 (conference)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE International Conference on Robotics and Automation, May 2017 (inproceedings)

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Thumb xl apollo system2 croped
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, 2017 IEEE International Conference on Robotics and Automation, May 2017 (inproceedings)

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]

2016


no image
Stepping stabilization using a combination of DCM tracking and step adjustment

Khadiv, M., Kleff, S., Herzog, A., Moosavian, S., Schaal, S., Righetti, L.

4th RSI International Conference on Robotics and Mechatronics, 2016 (conference)

arxiv [BibTex]

2016

arxiv [BibTex]


no image
A Convex Model of Humanoid Momentum Dynamics for Multi-Contact Motion Generation

Ponton, B., Herzog, A., Schaal, S., Righetti, L.

Proceedings of the 2016 IEEE-RAS International Conference on Humanoid Robots, 2016 (conference)

arxiv video [BibTex]

arxiv video [BibTex]


no image
Balancing and Walking Using Full Dynamics LQR Control with Contact Constraints

Mason, S., rotella, N., Schaal, S., Righetti, L.

Proceedings of the 2016 IEEE-RAS International Conference on Humanoid Robots, 2016 (conference)

[BibTex]

[BibTex]


no image
Step Timing Adjustment: A Step Toward Generating Robust Gaits

Khadiv, M., Herzog, A., Moosavian, S., Righetti, L.

Proceedings of the 2016 IEEE-RAS International Conference on Humanoid Robots, 2016 (conference)

arxiv video [BibTex]

arxiv video [BibTex]


Thumb xl iser small
Generalizing Regrasping with Supervised Policy Learning

Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., Schaal, S.

In International Symposium on Experimental Robotics (ISER) 2016, International Symposium on Experimental Robotics, 2016 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl front small
Self-Supervised Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning

Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G., Schaal, S.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control, pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

In Current Directions in Biomedical Engineering, 2(1), 2016 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl nao
Ensuring Ethical Behavior from Autonomous Systems

Anderson, M., Anderson, S. L., Berenz, V.

In Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, 2016 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 650-655, Humanoids, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 502-508, Humanoids, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 3750-3756, IROS, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016 (inproceedings)

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

[BibTex]

[BibTex]


no image
Towards Robust Online Inverse Dynamics Learning

Meier, F., Kappler, D., Ratliff, N., Schaal, S.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, 2016 (conference) Accepted

fmeier_iros_2016 [BibTex]

fmeier_iros_2016 [BibTex]


Thumb xl img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

pdf supplementary poster [BibTex]

pdf supplementary poster [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl iros2016 teaser
Structured contact force optimization for kino-dynamic motion generation

Herzog, A., Schaal, S., Righetti, L.

In International Conference on Intelligent Robots and Systems (IROS) 2016, pages: 2703-2710, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016 (inproceedings)

video pdf link (url) [BibTex]

video pdf link (url) [BibTex]


no image
Drifting Gaussian Processes with Varying Neighborhood Sizes for Online Model Learning

Meier, F., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

[BibTex]

[BibTex]


Thumb xl 2pamcompressed
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning

Büchler, D., Ott, H., Peters, J.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)

ICRA16final DOI [BibTex]

ICRA16final DOI [BibTex]


Thumb xl pic for website small
Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles

Widmaier, F., Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
To achieve accurate vision-based control with a robotic arm, a good hand-eye coordination is required. However, knowing the current configuration of the arm can be very difficult due to noisy readings from joint encoders or an inaccurate hand-eye calibration. We propose an approach for robot arm pose estimation that uses depth images of the arm as input to directly estimate angular joint positions. This is a frame-by-frame method which does not rely on good initialisation of the solution from the previous frames or knowledge from the joint encoders. For estimation, we employ a random regression forest which is trained on synthetically generated data. We compare different training objectives of the forest and also analyse the influence of prior segmentation of the arms on accuracy. We show that this approach improves previous work both in terms of computational complexity and accuracy. Despite being trained on synthetic data only, we demonstrate that the estimation also works on real depth images.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl ranking top 1
Optimizing for what matters: the Top Grasp Hypothesis

Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
In this paper, we consider the problem of robotic grasping of objects when only partial and noisy sensor data of the environment is available. We are specifically interested in the problem of reliably selecting the best hypothesis from a whole set. This is commonly the case when trying to grasp an object for which we can only observe a partial point cloud from one viewpoint through noisy sensors. There will be many possible ways to successfully grasp this object, and even more which will fail. We propose a supervised learning method that is trained with a ranking loss. This explicitly encourages that the top-ranked training grasp in a hypothesis set is also positively labeled. We show how we adapt the standard ranking loss to work with data that has binary labels and explain the benefits of this formulation. Additionally, we show how we can efficiently optimize this loss with stochastic gradient descent. In quantitative experiments, we show that we can outperform previous models by a large margin.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl retrieved templates 3
Exemplar-based Prediction of Object Properties from Local Shape Similarity

Bohg, J., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We propose a novel method that enables a robot to identify a graspable object part of an unknown object given only noisy and partial information that is obtained from an RGB-D camera. Our method combines the benefits of local with the advantages of global methods. It learns a classifier that takes a local shape representation as input and outputs the probability that a grasp applied at this location will be successful. Given a query data point that is classified in this way, we can retrieve all the locally similar training data points and use them to predict latent global object shape. This information may help to further prune positively labeled grasp hypotheses based on, e.g. relation to the predicted average global shape or suitability for a specific task. This prediction can also guide scene exploration to prune object shape hypotheses. To learn the function that maps local shape to grasp stability we use a Random Forest Classifier. We show that our method reaches the same classification performance as the current state-of-the-art on this dataset which uses a Convolutional Neural Network. Additionally, we exploit the natural ability of the Random Forest to cluster similar data. For a positively predicted query data point, we retrieve all the locally similar training data points that are associated with the same leaf nodes of the Random Forest. The main insight from this work is that local object shape that affords a grasp is also a good predictor of global object shape. We empirically support this claim with quantitative experiments. Additionally, we demonstrate the predictive capability of the method on some real data examples.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.48.37
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.56.20
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page Project Page [BibTex]


Thumb xl screen shot 2015 12 04 at 15.11.43
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference, Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

Web link (url) DOI Project Page Project Page [BibTex]

2015


no image
Whole-body motor strategies for balancing on a beam when changing the number of available degrees of freedom

Chiovetto, E, Huber, M, Righetti, L., Schaal, S., Sternad, D, Giese, M.

In Progress in Motor Control X, Budapest, Hungry, 2015 (inproceedings)

[BibTex]

2015

[BibTex]


no image
From Humans to Robots and Back: Role of Arm Movement in Medio-lateral Balance Control

Huber, M, Chiovetto, E, Schaal, S., Giese, M., Sternad, D

In Annual Meeting of Neural Control of Movement, Charleston, NC, 2015 (inproceedings)

[BibTex]

[BibTex]


Thumb xl rsz slip objects
Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor

Su, Z., Hausman, K., Chebotar, Y., Molchanov, A., Loeb, G. E., Sukhatme, G. S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 297-303, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
From Humans to Robots and Back: Role of Arm Movement in Medio-lateral Balance Control

Huber, M. E., Chiovetto, E., Righetti, L., Schaal, S., Giese, M., Sternad, D.

In Proceedings of Dynamic Walking, 2015 (inproceedings)

[BibTex]

[BibTex]


no image
Full Dynamics LQR Control for Bipedal Walking

Mason, S., Schaal, S., Righetti, L.

Proceedings of Dynamic Walking, 2015 (conference)

[BibTex]

[BibTex]


no image
Wrong and Useful: Metrics to Assess Simple Walking Models

Rebula, J., Righetti, L., Schaal, S.

In Proceedings of Dynamic Walking, 2015 (inproceedings)

[BibTex]


no image
Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., Ding, H.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 852-857, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Stabilizing Novel Objects by Learning to Predict Tactile Slip

Veiga, F., van Hoof, H., Peters, J., Hermans, T.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 5065-5072, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]