Header logo is am


2007


no image
A robust quadruped walking gait for traversing rough terrain

Pongas, D., Mistry, M., Schaal, S.

In International Conference on Robotics and Automation (ICRA2007), pages: 1474-1479, Rome, April 10-14, 2007, 2007, clmc (inproceedings)

Abstract
Legged locomotion excels when terrains become too rough for wheeled systems or open-loop walking pattern generators to succeed, i.e., when accurate foot placement is of primary importance in successfully reaching the task goal. In this paper we address the scenario where the rough terrain is traversed with a static walking gait, and where for every foot placement of a leg, the location of the foot placement was selected irregularly by a planning algorithm. Our goal is to adjust a smooth walking pattern generator with the selection of every foot placement such that the COG of the robot follows a stable trajectory characterized by a stability margin relative to the current support triangle. We propose a novel parameterization of the COG trajectory based on the current position, velocity, and acceleration of the four legs of the robot. This COG trajectory has guaranteed continuous velocity and acceleration profiles, which leads to continuous velocity and acceleration profiles of the leg movement, which is ideally suited for advanced model-based controllers. Pitch, yaw, and ground clearance of the robot are easily adjusted automatically under any terrain situation. We evaluate our gait generation technique on the Little-Dog quadruped robot when traversing complex rocky and sloped terrains.

link (url) [BibTex]

2007

link (url) [BibTex]


no image
Bayesian Nonparametric Regression with Local Models

Ting, J., Schaal, S.

In Workshop on Robotic Challenges for Machine Learning, NIPS 2007, 2007, clmc (inproceedings)

[BibTex]

[BibTex]


no image
Task space control with prioritization for balance and locomotion

Mistry, M., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robotics Systems (IROS 2007), San Diego, CA: Oct. 29 Ð Nov. 2, 2007, clmc (inproceedings)

Abstract
This paper addresses locomotion with active balancing, via task space control with prioritization. The center of gravity (COG) and foot of the swing leg are treated as task space control points. Floating base inverse kinematics with constraints is employed, thereby allowing for a mobile platform suitable for locomotion. Different techniques of task prioritization are discussed and we clarify differences and similarities of previous suggested work. Varying levels of prioritization for control are examined with emphasis on singularity robustness and the negative effects of constraint switching. A novel controller for task space control of balance and locomotion is developed which attempts to address singularity robustness, while minimizing discontinuities created by constraint switching. Controllers are evaluated using a quadruped robot simulator engaging in a locomotion task.

link (url) [BibTex]

link (url) [BibTex]

2002


no image
Learning rhythmic movements by demonstration using nonlinear oscillators

Ijspeert, J. A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2002), pages: 958-963, Piscataway, NJ: IEEE, Lausanne, Sept.30-Oct.4 2002, 2002, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

link (url) [BibTex]

2002

link (url) [BibTex]


no image
Movement imitation with nonlinear dynamical systems in humanoid robots

Ijspeert, J. A., Nakanishi, J., Schaal, S.

In International Conference on Robotics and Automation (ICRA2002), Washinton, May 11-15 2002, 2002, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

link (url) [BibTex]

link (url) [BibTex]


no image
A locally weighted learning composite adaptive controller with structure adaptation

Nakanishi, J., Farrell, J. A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Sept.30-Oct.4 2002, 2002, clmc (inproceedings)

Abstract
This paper introduces a provably stable adaptive learning controller which employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the pro-posed learning adaptive control algorithm uses both the tracking error and the estimation error to up-date the parameters. We provide Lyapunov analyses that demonstrate the stability properties of the learning controller. Numerical simulations illustrate rapid convergence of the tracking error and the automatic structure adaptation capability of the function approximator. This paper introduces a provably stable adaptive learning controller which employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the pro-posed learning adaptive control algorithm uses both the tracking error and the estimation error to up-date the parameters. We provide Lyapunov analyses that demonstrate the stability properties of the learning controller. Numerical simulations illustrate rapid convergence of the tracking error and the automatic structure adaptation capability of the function approximator

link (url) [BibTex]

link (url) [BibTex]

2001


no image
Humanoid oculomotor control based on concepts of computational neuroscience

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

In Humanoids2001, Second IEEE-RAS International Conference on Humanoid Robots, 2001, clmc (inproceedings)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., the stabilization of gaze in face of unknown perturbations of the body, selective attention, the complexity of stereo vision and dealing with large information processing delays. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors was derived from inspirations from computational neuroscience, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors that appears natural and human-like.

link (url) [BibTex]

2001

link (url) [BibTex]


no image
Trajectory formation for imitation with nonlinear dynamical systems

Ijspeert, A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), pages: 752-757, Weilea, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
This article explores a new approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system (TFS) in the context of a humanoid robot simulation that is part of the Virtual Trainer (VT) project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multi-joint human movements can be encoded successfully, and that this system allows robust modifications of the movement policy through external variables.

link (url) [BibTex]

link (url) [BibTex]


no image
Real-time statistical learning for robotics and human augmentation

Schaal, S., Vijayakumar, S., D’Souza, A., Ijspeert, A., Nakanishi, J.

In International Symposium on Robotics Research, (Editors: Jarvis, R. A.;Zelinsky, A.), Lorne, Victoria, Austrialia Nov.9-12, 2001, clmc (inproceedings)

Abstract
Real-time modeling of complex nonlinear dynamic processes has become increasingly important in various areas of robotics and human augmentation. To address such problems, we have been developing special statistical learning methods that meet the demands of on-line learning, in particular the need for low computational complexity, rapid learning, and scalability to high-dimensional spaces. In this paper, we introduce a novel algorithm that possesses all the necessary properties by combining methods from probabilistic and nonparametric learning. We demonstrate the applicability of our methods for three different applications in humanoid robotics, i.e., the on-line learning of a full-body inverse dynamics model, an inverse kinematics model, and imitation learning. The latter application will also introduce a novel method to shape attractor landscapes of dynamical system by means of statis-tical learning.

link (url) [BibTex]

link (url) [BibTex]


no image
Robust learning of arm trajectories through human demonstration

Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
We present a model, composed of hierarchy of artificial neural networks, for robot learning by demonstration. The model is implemented in a dynamic simulation of a 41 degrees of freedom humanoid for reproducing 3D human motion of the arm. Results show that the model requires few information about the desired trajectory and learns on-line the relevant features of movement. It can generalize across a small set of data to produce a qualitatively good reproduction of the demonstrated trajectory. Finally, it is shown that reproduction of the trajectory after learning is robust against perturbations.

link (url) [BibTex]

link (url) [BibTex]


no image
Overt visual attention for a humanoid robot

Vijayakumar, S., Conradt, J., Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
The goal of our research is to investigate the interplay between oculomotor control, visual processing, and limb control in humans and primates by exploring the computational issues of these processes with a biologically inspired artificial oculomotor system on an anthropomorphic robot. In this paper, we investigate the computational mechanisms for visual attention in such a system. Stimuli in the environment excite a dynamical neural network that implements a saliency map, i.e., a winner-take-all competition between stimuli while simultenously smoothing out noise and suppressing irrelevant inputs. In real-time, this system computes new targets for the shift of gaze, executed by the head-eye system of the robot. The redundant degrees-of- freedom of the head-eye system are resolved through a learned inverse kinematics with optimization criterion. We also address important issues how to ensure that the coordinate system of the saliency map remains correct after movement of the robot. The presented attention system is built on principled modules and generally applicable for any sensory modality.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning inverse kinematics

D’Souza, A., Vijayakumar, S., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates learning of inverse kinematics for resolved motion rate control (RMRC) employing an optimization criterion to resolve kinematic redundancies. Our learning approach is based on the key observations that learning an inverse of a non uniquely invertible function can be accomplished by augmenting the input representation to the inverse model and by using a spatially localized learning approach. We apply this strategy to inverse kinematics learning and demonstrate how a recently developed statistical learning algorithm, Locally Weighted Projection Regression, allows efficient learning of inverse kinematic mappings in an incremental fashion even when input spaces become rather high dimensional. The resulting performance of the inverse kinematics is comparable to Liegeois ([1]) analytical pseudo inverse with optimization. Our results are illustrated with a 30 degree-of-freedom humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic smooth pursuit based on fast learning of the target dynamics

Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
Following a moving target with a narrow-view foveal vision system is one of the essential oculomotor behaviors of humans and humanoids. This oculomotor behavior, called ``Smooth Pursuit'', requires accurate tracking control which cannot be achieved by a simple visual negative feedback controller due to the significant delays in visual information processing. In this paper, we present a biologically inspired and control theoretically sound smooth pursuit controller consisting of two cascaded subsystems. One is an inverse model controller for the oculomotor system, and the other is a learning controller for the dynamics of the visual target. The latter controller learns how to predict the target's motion in head coordinates such that tracking performance can be improved. We investigate our smooth pursuit system in simulations and experiments on a humanoid robot. By using a fast on-line statistical learning network, our humanoid oculomotor system is able to acquire high performance smooth pursuit after about 5 seconds of learning despite significant processing delays in the syste

link (url) [BibTex]

link (url) [BibTex]

1992


no image
What should be learned?

Schaal, S., Atkeson, C. G., Botros, S.

In Proceedings of Seventh Yale Workshop on Adaptive and Learning Systems, pages: 199-204, New Haven, CT, May 20-22, 1992, clmc (inproceedings)

[BibTex]

1992

[BibTex]