Header logo is am


2008


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

2008

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

link (url) [BibTex]

link (url) [BibTex]


no image
Computational model for movement learning under uncertain cost

Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
Stochastic optimal control is a framework for computing control commands that lead to an optimal behavior under a given cost. Despite the long history of optimal control in engineering, it has been only recently applied to describe human motion. So far, stochastic optimal control has been mainly used in tasks that are already learned, such as reaching to a target. For learning, however, there are only few cases where optimal control has been applied. The main assumptions of stochastic optimal control that restrict its application to tasks after learning are the a priori knowledge of (1) a quadratic cost function (2) a state space model that captures the kinematics and/or dynamics of musculoskeletal system and (3) a measurement equation that models the proprioceptive and/or exteroceptive feedback. Under these assumptions, a sequence of control gains is computed that is optimal with respect to the prespecified cost function. In our work, we relax the assumption of the a priori known cost function and provide a computational framework for modeling tasks that involve learning. Typically, a cost function consists of two parts: one part that models the task constraints, like squared distance to goal at movement endpoint, and one part that integrates over the squared control commands. In learning a task, the first part of this cost function will be adapted. We use an expectation-maximization scheme for learning: the expectation step optimizes the task constraints through gradient descent of a reward function and the maximizing step optimizes the control commands. Our computational model is tested and compared with data given from a behavioral experiment. In this experiment, subjects sit in front of a drawing tablet and look at a screen onto which the drawing-pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. Therefore the cost is a function of this bias. The subjects were asked to reach to the target and minimize this cost over trials. In this behavioral experiment, subjects could learn the bias and thus showed reinforcement learning. With our computational model, we could model the learning process over trials. Particularly, the dependence on parameters of the reward function (Gaussian width) and the modulation of movement variance over time were similar in experiment and model.

[BibTex]

[BibTex]


no image
Optimization strategies in human reinforcement learning

Hoffmann, H., Theodorou, E., Schaal, S.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

PDF [BibTex]

PDF [BibTex]


no image
A Bayesian approach to empirical local linearizations for robotics

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)

Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a ``reasonable'' linear regime of the system, which can be defined from the Hessian at the point of the linearization -- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a ``reasonable'' local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. This approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.

link (url) [BibTex]

link (url) [BibTex]


no image
Do humans plan continuous trajectories in kinematic coordinates?

Hoffmann, H., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
The planning and execution of human arm movements is still unresolved. An ongoing controversy is whether we plan a movement in kinematic coordinates and convert these coordinates with an inverse internal model into motor commands (like muscle activation) or whether we combine a few muscle synergies or equilibrium points to move a hand, e.g., between two targets. The first hypothesis implies that a planner produces a desired end-effector position for all time points; the second relies on the dynamics of the muscular-skeletal system for a given control command to produce a continuous end-effector trajectory. To distinguish between these two possibilities, we use a visuomotor adaptation experiment. Subjects moved a pen on a graphics tablet and observed the pen's mapped position onto a screen (subjects quickly adapted to this mapping). The task was to move a cursor between two points in a given time window. In the adaptation test, we manipulated the velocity profile of the cursor feedback such that the shape of the trajectories remained unchanged (for straight paths). If humans would use a kinematic plan and map at each time the desired end-effector position onto control commands, subjects should adapt to the above manipulation. In a similar experiment, Wolpert et al (1995) showed adaptation to changes in the curvature of trajectories. This result, however, cannot rule out a shift of an equilibrium point or an additional synergy activation between start and end point of a movement. In our experiment, subjects did two sessions, one control without and one with velocity-profile manipulation. To skew the velocity profile of the cursor trajectory, we added to the current velocity, v, the function 0.8*v*cos(pi + pi*x), where x is the projection of the cursor position onto the start-goal line divided by the distance start to goal (x=0 at the start point). As result, subjects did not adapt to this manipulation: for all subjects, the true hand motion was not significantly modified in a direction consistent with adaptation, despite that the visually presented motion differed significantly from the control motion. One may still argue that this difference in motion was insufficient to be processed visually. Thus, as a control experiment, we replayed control and modified motions to the subjects and asked which of the two motions appeared 'more natural'. Subjects chose the unperturbed motion as more natural significantly better than chance. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no adaptation under such transformation.

[BibTex]

[BibTex]

2006


Thumb xl bioprint
Molecular Modeling for the BioPrint Pharmaco-informatics Platform

Berenz, V., Tillier, F., Barbosa, F., Boryeu, M., Horvath, D., Froloff, N.

2006 (poster)

[BibTex]

2006

[BibTex]


no image
Learning operational space control

Peters, J., Schaal, S.

In Robotics: Science and Systems II (RSS 2006), pages: 255-262, (Editors: Gaurav S. Sukhatme and Stefan Schaal and Wolfram Burgard and Dieter Fox), Cambridge, MA: MIT Press, RSS , 2006, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-covexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. A first important insight for this paper is that, nevertheless, a physically correct solution to the inverse problem does exits when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on a recent insight that many operational space controllers can be understood in terms of a constraint optimal control problem. The cost function associated with this optimal control problem allows us to formulate a learning algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the view of machine learning, the learning problem corresponds to a reinforcement learning problem that maximizes an immediate reward and that employs an expectation-maximization policy search algorithm. Evaluations on a three degrees of freedom robot arm illustrate the feasability of our suggested approach.

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement Learning for Parameterized Motor Primitives

Peters, J., Schaal, S.

In Proceedings of the 2006 International Joint Conference on Neural Networks, pages: 73-80, IJCNN, 2006, clmc (inproceedings)

Abstract
One of the major challenges in both action generation for robotics and in the understanding of human motor control is to learn the "building blocks of movement generation", called motor primitives. Motor primitives, as used in this paper, are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. While a lot of progress has been made in teaching parameterized motor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this paper, we evaluate different reinforcement learning approaches for improving the performance of parameterized motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for robotics

Peters, J., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robotics Systems, pages: 2219-2225, IROS, 2006, clmc (inproceedings)

Abstract
The aquisition and improvement of motor skills and control policies for robotics from trial and error is of essential importance if robots should ever leave precisely pre-structured environments. However, to date only few existing reinforcement learning methods have been scaled into the domains of highdimensional robots such as manipulator, legged or humanoid robots. Policy gradient methods remain one of the few exceptions and have found a variety of applications. Nevertheless, the application of such methods is not without peril if done in an uninformed manner. In this paper, we give an overview on learning with policy gradient methods for robotics with a strong focus on recent advances in the field. We outline previous applications to robotics and show how the most recently developed methods can significantly improve learning performance. Finally, we evaluate our most promising algorithm in the application of hitting a baseball with an anthropomorphic arm.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Statistical Learning of LQG controllers

Theodorou, E.

Technical Report-2006-1, Computational Action and Vision Lab University of Minnesota, 2006, clmc (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Approximate nearest neighbor regression in very high dimensions

Vijayakumar, S., DSouza, A., Schaal, S.

In Nearest-Neighbor Methods in Learning and Vision, pages: 103-142, (Editors: Shakhnarovich, G.;Darrell, T.;Indyk, P.), Cambridge, MA: MIT Press, 2006, clmc (inbook)

link (url) [BibTex]

link (url) [BibTex]

1998


no image
Programmable pattern generators

Schaal, S., Sternad, D.

In 3rd International Conference on Computational Intelligence in Neuroscience, pages: 48-51, Research Triangle Park, NC, Oct. 24-28, October 1998, clmc (inproceedings)

Abstract
This paper explores the idea to create complex human-like arm movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of an arm is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target specifications. The rhythmic system can add an additional oscillatory movement relative to the current position of the discrete system. In the present study, we develop appropriate dynamic systems that can realize the above model, motivate the particular choice of the systems from a biological and engineering point of view, and present simulation results of the performance of such movement primitives. Implementation results on a Sarcos Dexterous Arm are discussed.

link (url) [BibTex]

1998

link (url) [BibTex]


no image
Robust local learning in high dimensional spaces

Vijayakumar, S., Schaal, S.

In 5th Joint Symposium on Neural Computation, pages: 186-193, Institute for Neural Computation, University of California, San Diego, San Diego, CA, 1998, clmc (inproceedings)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper, we suggest a partial revision of this view. Based on empirical studies, we observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a dynamically growing local dimensionality reduction technique as a preprocessing step with a nonparametric learning technique, locally weighted regression, that also learns the region of validity of the regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set, and for data of the inverse dynamics of human arm movements and an actual 7 degree-of-freedom anthropomorphic robot arm.

[BibTex]

[BibTex]


no image
Local dimensionality reduction

Schaal, S., Vijayakumar, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 10, pages: 633-639, (Editors: Jordan, M. I.;Kearns, M. J.;Solla, S. A.), MIT Press, Cambridge, MA, 1998, clmc (inproceedings)

Abstract
If globally high dimensional data has locally only low dimensional distributions, it is advantageous to perform a local dimensionality reduction before further processing the data. In this paper we examine several techniques for local dimensionality reduction in the context of locally weighted linear regression. As possible candidates, we derive local versions of factor analysis regression, principle component regression, principle component regression on joint distributions, and partial least squares regression. After outlining the statistical bases of these methods, we perform Monte Carlo simulations to evaluate their robustness with respect to violations of their statistical assumptions. One surprising outcome is that locally weighted partial least squares regression offers the best average results, thus outperforming even factor analysis, the theoretically most appealing of our candidate techniques.

link (url) [BibTex]

link (url) [BibTex]


no image
Constructive incremental learning from only local information

Schaal, S., Atkeson, C. G.

Neural Computation, 10(8):2047-2084, 1998, clmc (article)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of spatially localized linear models. In contrast to other approaches, the size and shape of the receptive field of each locally linear model as well as the parameters of the locally linear model itself are learned independently, i.e., without the need for competition or any other kind of communication. Independent learning is accomplished by incrementally minimizing a weighted local cross validation error. As a result, we obtain a learning system that can allocate resources as needed while dealing with the bias-variance dilemma in a principled way. The spatial localization of the linear models increases robustness towards negative interference. Our learning system can be interpreted as a nonparametric adaptive bandwidth smoother, as a mixture of experts where the experts are trained in isolation, and as a learning system which profits from combining independent expert knowledge on the same problem. This paper illustrates the potential learning capabilities of purely local learning and offers an interesting and powerful approach to learning with receptive fields. 

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic gaze stabilization based on a study of the vestibulocerebellum

Shibata, T., Schaal, S.

In European Workshop on Learning Robots, pages: 84-94, Edinburgh, UK, 1998, clmc (inproceedings)

Abstract
Accurate oculomotor control is one of the essential pre-requisites for successful visuomotor coordination. In this paper, we suggest a biologically inspired control system for learning gaze stabilization with a biomimetic robotic oculomotor system. In a stepwise fashion, we develop a control circuit for the vestibulo-ocular reflex (VOR) and the opto-kinetic response (OKR), and add a nonlinear learning network to allow adaptivity. We discuss the parallels and differences of our system with biological oculomotor control and suggest solutions how to deal with nonlinearities and time delays in the control system. In simulation and actual robot studies, we demonstrate that our system can learn gaze stabilization in real time in only a few seconds with high final accuracy.

link (url) [BibTex]

link (url) [BibTex]


no image
Towards biomimetic vision

Shibata, T., Schaal, S.

In International Conference on Intelligence Robots and Systems, pages: 872-879, Victoria, Canada, 1998, clmc (inproceedings)

Abstract
Oculomotor control is the foundation of most biological visual systems, as well as an important component in the entire perceptual-motor system. We review some of the most basic principles of biological oculomotor systems, and explore their usefulness from both the biological and computational point of view. As an example of biomimetic oculomotor control, we present the state of our implementations and experimental results using the vestibulo-ocular-reflex and opto-kinetic-reflex paradigm

link (url) [BibTex]

link (url) [BibTex]


no image
Local adaptive subspace regression

Vijayakumar, S., Schaal, S.

Neural Processing Letters, 7(3):139-149, 1998, clmc (article)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper we suggest a partial revision of the view. Based on empirical studies, we observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a dynamically growing local dimensionality reduction technique  as a preprocessing step with a nonparametric learning technique, locally weighted regression, that also learns the region of validity of the regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set, and for data of the inverse dynamics of human arm movements and an actual 7 degree-of-freedom anthropomorphic robot arm. 

link (url) [BibTex]

link (url) [BibTex]

1996


no image
A kendama learning robot based on a dynamic optimiation principle

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Rieka, O., Nakano, E., Wada, Y., Kawato, M.

In Preceedings of the International Conference on Neural Information Processing, pages: 938-942, Hong Kong, September 1996, clmc (inproceedings)

[BibTex]

1996

[BibTex]


no image
A Kendama learning robot based on bi-directional theory

Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., Kawato, M.

Neural Networks, 9(8):1281-1302, 1996, clmc (article)

Abstract
A general theory of movement-pattern perception based on bi-directional theory for sensory-motor integration can be used for motion capture and learning by watching in robotics. We demonstrate our methods using the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has a very similar kinematic structure to the human arm. Three ingredients have to be integrated for the successful execution of this task. The ingredients are (1) to extract via-points from a human movement trajectory using a forward-inverse relaxation model, (2) to treat via-points as a control variable while reconstructing the desired trajectory from all the via-points, and (3) to modify the via-points for successful execution. In order to test the validity of the via-point representation, we utilized a numerical model of the SARCOS arm, and examined the behavior of the system under several conditions.

link (url) [BibTex]

link (url) [BibTex]


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

link (url) [BibTex]

link (url) [BibTex]


no image
One-handed juggling: A dynamical approach to a rhythmic movement task

Schaal, S., Sternad, D., Atkeson, C. G.

Journal of Motor Behavior, 28(2):165-183, 1996, clmc (article)

Abstract
The skill of rhythmic juggling a ball on a racket is investigated from the viewpoint of nonlinear dynamics. The difference equations that model the dynamical system are analyzed by means of local and non-local stability analyses. These analyses yield that the task dynamics offer an economical juggling pattern which is stable even for open-loop actuator motion. For this pattern, two types of pre dictions are extracted: (i) Stable periodic bouncing is sufficiently characterized by a negative acceleration of the racket at the moment of impact with the ball; (ii) A nonlinear scaling relation maps different juggling trajectories onto one topologically equivalent dynamical system. The relevance of these results for the human control of action was evaluated in an experiment where subjects performed a comparable task of juggling a ball on a paddle. Task manipulations involved different juggling heights and gravity conditions of the ball. The predictions were confirmed: (i) For stable rhythmic performance the paddle's acceleration at impact is negative and fluctuations of the impact acceleration follow predictions from global stability analysis; (ii) For each subject, the realizations of juggling for the different experimental conditions are related by the scaling relation. These results allow the conclusion that for the given task, humans reliably exploit the stable solutions inherent to the dynamics of the task and do not overrule these dynamics by other control mechanisms. The dynamical scaling serves as an efficient principle to generate different movement realizations from only a few parameter changes and is discussed as a dynamical formalization of the principle of motor equivalence.

link (url) [BibTex]

link (url) [BibTex]

1993


no image
Learning passive motor control strategies with genetic algorithms

Schaal, S., Sternad, D.

In 1992 Lectures in complex systems, pages: 913-918, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
This study investigates learning passive motor control strategies. Passive control is understood as control without active error correction; the movement is stabilized by particular properties of the controlling dynamics. We analyze the task of juggling a ball on a racket. An approximation to the optimal solution of the task is derived by means of optimization theory. In order to model the learning process, the problem is coded for a genetic algorithm in representations without sensory or with sensory information. For all representations the genetic algorithm is able to find passive control strategies, but learning speed and the quality of the outcome are significantly different. A comparison with data from human subjects shows that humans seem to apply yet different movement strategies to the ones proposed. For the feedback representation some implications arise for learning from demonstration.

link (url) [BibTex]

1993

link (url) [BibTex]


no image
A genetic algorithm for evolution from an ecological perspective

Sternad, D., Schaal, S.

In 1992 Lectures in Complex Systems, pages: 223-231, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
In the population model presented, an evolutionary dynamic is explored which is based on the operator characteristics of genetic algorithms. An essential modification in the genetic algorithms is the inclusion of a constraint in the mixing of the gene pool. The pairing for the crossover is governed by a selection principle based on a complementarity criterion derived from the theoretical tenet of perception-action (P-A) mutuality of ecological psychology. According to Swenson and Turvey [37] P-A mutuality underlies evolution and is an integral part of its thermodynamics. The present simulation tested the contribution of P-A-cycles in evolutionary dynamics. A numerical experiment compares the population's evolution with and without this intentional component. The effect is measured in the difference of the rate of energy dissipation, as well as in three operationalized aspects of complexity. The results support the predicted increase in the rate of energy dissipation, paralleled by an increase in the average heterogeneity of the population. Furthermore, the spatio-temporal evolution of the system is tested for the characteristic power-law relations of a nonlinear system poised in a critical state. The frequency distribution of consecutive increases in population size shows a significantly different exponent in functional relationship.

[BibTex]

[BibTex]


no image
Roles for memory-based learning in robotics

Atkeson, C. G., Schaal, S.

In Proceedings of the Sixth International Symposium on Robotics Research, pages: 503-521, Hidden Valley, PA, 1993, clmc (inproceedings)

[BibTex]

[BibTex]


no image
Design concurrent calculation: A CAD- and data-integrated approach

Schaal, S., Ehrlenspiel, K.

Journal of Engineering Design, 4, pages: 71-85, 1993, clmc (article)

Abstract
Besides functional regards, product design demands increasingly more for further reaching considerations. Quality alone cannot suffice anymore to compete in the market; design for manufacturability, for assembly, for recycling, etc., are well-known keywords. Those can largely be reduced to the necessity of design for costs. This paper focuses on a CAD-based approach to design concurrent calculation. It will discuss how, in the meantime well-established, tools like feature technology, knowledge-based systems, and relational databases can be blended into one coherent concept to achieve an entirely CAD- and data-integrated cost information tool. This system is able to extract data from the CAD-system, combine it with data about the company specific manufacturing environment, and subsequently autonomously evaluate manufacturability aspects and costs of the given CAD-model. Within minutes the designer gets quantitative in-formation about the major cost sources of his/her design. Additionally, some alternative methods for approximating manu-facturing times from empirical data, namely neural networks and local weighted regression, are introduced.

[BibTex]

[BibTex]


no image
Open loop stable control strategies for robot juggling

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 913-918, Piscataway, NJ: IEEE, Georgia, Atlanta, May 2-6, 1993, clmc (inproceedings)

Abstract
In a series of case studies out of the field of dynamic manipulation (Mason, 1992), different principles for open loop stable control are introduced and analyzed. This investigation may provide some insight into how open loop control can serve as a useful foundation for closed loop control and, particularly, what to focus on in learning control. 

link (url) [BibTex]

link (url) [BibTex]