Header logo is am


1994


no image
Memory-based robot learning

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 2928-2933, San Diego, CA, 1994, clmc (inproceedings)

Abstract
We present a memory-based local modeling approach to robot learning using a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, the (hyper-) tangent planes at every query point. This is in contrast to other methods using a finite set of linear models to accomplish a piece-wise linear model. Architectural parameters of our approach, such as distance metrics, are a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

[BibTex]

1994

[BibTex]


no image
Nonparametric regression for learning

Schaal, S.

In Conference on Adaptive Behavior and Learning, Center of Interdisciplinary Research (ZIF) Bielefeld Germany, also technical report TR-H-098 of the ATR Human Information Processing Research Laboratories, 1994, clmc (inproceedings)

Abstract
In recent years, learning theory has been increasingly influenced by the fact that many learning algorithms have at least in part a comprehensive interpretation in terms of well established statistical theories. Furthermore, with little modification, several statistical methods can be directly cast into learning algorithms. One family of such methods stems from nonparametric regression. This paper compares nonparametric learning with the more widely used parametric counterparts and investigates how these two families differ in their properties and their applicability. 

link (url) [BibTex]

link (url) [BibTex]