Header logo is am


2018


A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

link (url) DOI [BibTex]


Playful: Reactive Programming for Orchestrating Robotic Behavior
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

playful website playful_IEEE_RAM link (url) DOI [BibTex]


ClusterNet: Instance Segmentation in RGB-D Images
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

link (url) [BibTex]

link (url) [BibTex]


Real-time Perception meets Reactive Motion Generation
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

arxiv video video link (url) DOI Project Page [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


Combining learned and analytical models for predicting action effects
Combining learned and analytical models for predicting action effects

Kloss, A., Schaal, S., Bohg, J.

arXiv, 2018 (article) Submitted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

arXiv pdf link (url) [BibTex]

2015


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

link (url) [BibTex]

2015

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

[BibTex]

[BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

DOI [BibTex]

DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

[BibTex]

[BibTex]

2012


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

Project Page [BibTex]

2012

Project Page [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

[BibTex]

[BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

[BibTex]

[BibTex]

2011


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

[BibTex]

2011

[BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

link (url) [BibTex]

link (url) [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

link (url) [BibTex]

link (url) [BibTex]


no image
Understanding haptics by evolving mechatronic systems

Loeb, G. E., Tsianos, G.A., Fishel, J.A., Wettels, N., Schaal, S.

Progress in Brain Research, 192, pages: 129, 2011 (article)

[BibTex]

[BibTex]

2008


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

link (url) DOI [BibTex]

2008

link (url) DOI [BibTex]


no image
Adaptation to a sub-optimal desired trajectory

M. Mistry, E. A. G. L. T. Y. S. S. M. K.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

PDF [BibTex]

PDF [BibTex]


no image
Operational space control: A theoretical and emprical comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)

Abstract
Dexterous manipulation with a highly redundant movement system is one of the hallmarks of hu- man motor skills. From numerous behavioral studies, there is strong evidence that humans employ compliant task space control, i.e., they focus control only on task variables while keeping redundant degrees-of-freedom as compliant as possible. This strategy is robust towards unknown disturbances and simultaneously safe for the operator and the environment. The theory of operational space con- trol in robotics aims to achieve similar performance properties. However, despite various compelling theoretical lines of research, advanced operational space control is hardly found in actual robotics imple- mentations, in particular new kinds of robots like humanoids and service robots, which would strongly profit from compliant dexterous manipulation. To analyze the pros and cons of different approaches to operational space control, this paper focuses on a theoretical and empirical evaluation of different methods that have been suggested in the literature, but also some new variants of operational space controllers. We address formulations at the velocity, acceleration and force levels. First, we formulate all controllers in a common notational framework, including quaternion-based orientation control, and discuss some of their theoretical properties. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm with several benchmark tasks. As an aside, we also introduce a novel parameter estimation algorithm for rigid body dynamics, which ensures physical consistency, as this issue was crucial for our successful robot implementations. Our extensive empirical results demonstrate that one of the simplified acceleration-based approaches can be advantageous in terms of task performance, ease of parameter tuning, and general robustness and compliance in face of inevitable modeling errors.

link (url) [BibTex]

link (url) [BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

link (url) [BibTex]

link (url) [BibTex]


no image
Optimization strategies in human reinforcement learning

Hoffmann, H., Theodorou, E., Schaal, S.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

PDF [BibTex]

PDF [BibTex]

2007


no image
The new robotics - towards human-centered machines

Schaal, S.

HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115-126, 2007, clmc (article)

Abstract
Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research instiutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

link (url) [BibTex]

2007

link (url) [BibTex]


no image
Dynamics systems vs. optimal control ? a unifying view

Schaal, S, Mohajerian, P., Ijspeert, A.

In Progress in Brain Research, (165):425-445, 2007, clmc (inbook)

Abstract
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

link (url) [BibTex]

link (url) [BibTex]

1992


no image
Ins CAD integrierte Kostenkalkulation (CAD-Integrated Cost Calculation)

Ehrlenspiel, K., Schaal, S.

Konstruktion 44, 12, pages: 407-414, 1992, clmc (article)

[BibTex]

1992

[BibTex]


no image
Integrierte Wissensverarbeitung mit CAD am Beispiel der konstruktionsbegleitenden Kalkulation (Ways to smarter CAD Systems)

Schaal, S.

Hanser 1992. (Konstruktionstechnik München Band 8). Zugl. München: TU Diss., München, 1992, clmc (book)

[BibTex]

[BibTex]


no image
Informationssysteme mit CAD (Information systems within CAD)

Schaal, S.

In CAD/CAM Grundlagen, pages: 199-204, (Editors: Milberg, J.), Springer, Buchreihe CIM-TT. Berlin, 1992, clmc (inbook)

[BibTex]

[BibTex]