Anderson, M., Anderson, S., Berenz, V.
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
Proceedings of the IEEE, pages: 1,15, October 2018 (article)
Berenz, V., Schaal, S.
Playful: Reactive Programming for Orchestrating Robotic Behavior
IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press
Shao, L., Tian, Y., Bohg, J.
ClusterNet: Instance Segmentation in RGB-D Images
arXiv, September 2018, Submitted to ICRA'19 (article) Submitted
Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.
Leveraging Contact Forces for Learning to Grasp
arXiv, September 2018, Submitted to ICRA'19 (article) Submitted
Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.
Real-time Perception meets Reactive Motion Generation
IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)
Muehlebach, M., Trimpe, S.
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach
IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)
Kloss, A., Schaal, S., Bohg, J.
Combining learned and analytical models for predicting action effects
arXiv, 2018 (article) Submitted
Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.
A New Perspective and Extension of the Gaussian Filter
The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)
Ratliff, N., Meier, F., Kappler, D., Schaal, S.
DOOMED: Direct Online Optimization of Modeling Errors in Dynamics
arXiv preprint arXiv:1608.00309, August 2016 (article)
Dominey, P. F., Prescott, T. J., Bohg, J., Engel, A. K., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.
Implications of Action-Oriented Paradigm Shifts in Cognitive Science
In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press
Bohg, J., Kragic, D.
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment
In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press
Daniel, C., van Hoof, H., Peters, J., Neumann, G.
Probabilistic Inference for Determining Options in Reinforcement Learning
Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)
Ting, J., Meier, F., Vijayakumar, S., Schaal, S.
Locally Weighted Regression for Control
In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)
Laidig, D., Trimpe, S., Seel, T.
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks
Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)
Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid
Autonomous Robots, 40(3):473-491, 2016 (article)
Vitiello, Nicola, Ijspeert, Auke J, Schaal, S.
Bioinspired Motor Control for Articulated Robots [From the Guest Editors]
IEEE Robotics {\&} Automation Magazine, 23(1):20-21, 2016 (article)
Illonen, J., Bohg, J., Kyrki, V.
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing
The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)
Mistry, M., Theodorou, E., Schaal, S., Kawato, M.
Optimal control of reaching includes kinematic constraints
Journal of Neurophysiology, 2013, clmc (article)
Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors
Neural Computation, (25):328-373, 2013, clmc (article)
Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.
Using Torque Redundancy to Optimize Contact Forces in Legged Robots
In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)
Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.
Optimal distribution of contact forces with inverse-dynamics control
The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)
Peters, J., Kober, J., Schaal, S.
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)
Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)
Ting, J., DSouza, A., Schaal, S.
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics
Neural Networks, 2010, clmc (article)
Theodorou, E. A., Todorov, E., Valero-Cuevas, F.
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model
Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)
Ting, J., Vijayakumar, S., Schaal, S.
Locally weighted regression for control
In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)
Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.
Efficient learning and feature detection in high dimensional regression
Neural Computation, 22, pages: 831-886, 2010, clmc (article)
Theodorou, E., Tassa, Y., Todorov, E.
Stochastic Differential Dynamic Programming
In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)
Schaal, S., Atkeson, C. G.
Learning control in robotics – trajectory-based opitimal control techniques
Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)
Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.
Learning, planning, and control for quadruped locomotion over challenging terrain
International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)
Peters, J., Schaal, S.
Learning to control in operational space
International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)
M. Mistry, E. A. G. L. T. Y. S. S. M. K.
Adaptation to a sub-optimal desired trajectory
Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)
Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.
Operational space control: A theoretical and emprical comparison
International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)
Klanke, S., Vijayakumar, S., Schaal, S.
A library for locally weighted projection regression
Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)
Hoffmann, H., Theodorou, E., Schaal, S.
Optimization strategies in human reinforcement learning
Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)
Schaal, S., Atkeson, C. G.
Constructive incremental learning from only local information
Neural Computation, 10(8):2047-2084, 1998, clmc (article)
Vijayakumar, S., Schaal, S.
Local adaptive subspace regression
Neural Processing Letters, 7(3):139-149, 1998, clmc (article)