Header logo is am


2008


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

2008

link (url) [BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Behavioral experiments on reinforcement learning in human motor control

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Reinforcement learning (RL) - learning solely based on reward or cost feedback - is widespread in robotics control and has been also suggested as computational model for human motor control. In human motor control, however, hardly any experiment studied reinforcement learning. Here, we study learning based on visual cost feedback in a reaching task and did three experiments: (1) to establish a simple enough experiment for RL, (2) to study spatial localization of RL, and (3) to study the dependence of RL on the cost function. In experiment (1), subjects sit in front of a drawing tablet and look at a screen onto which the drawing pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. We choose as cost the squared distance between target and virtual pen position at the target line. Above a threshold value, the cost was fixed at this value. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. As result, subjects could learn the bias, and thus, showed reinforcement learning. In experiment (2), we randomly altered the target position between three different locations (three different directions from start point: -45, 0, 45). For each direction, we chose a different bias. As result, subjects learned all three bias values simultaneously. Thus, RL can be spatially localized. In experiment (3), we varied the sensitivity of the cost function by multiplying the squared distance with a constant value C, while keeping the same cut-off threshold. As in experiment (2), we had three target locations. We assigned to each location a different C value (this assignment was randomized between subjects). Since subjects learned the three locations simultaneously, we could directly compare the effect of the different cost functions. As result, we found an optimal C value; if C was too small (insensitive cost), learning was slow; if C was too large (narrow cost valley), the exploration time was longer and learning delayed. Thus, reinforcement learning in human motor control appears to be sen

[BibTex]

[BibTex]


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Adaptive stair-climbing behaviour with a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In Advances In Mobile Robotics, pages: 768-775, World Scientific, August 2008 (incollection)

DOI [BibTex]

DOI [BibTex]


no image
Computational model for movement learning under uncertain cost

Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
Stochastic optimal control is a framework for computing control commands that lead to an optimal behavior under a given cost. Despite the long history of optimal control in engineering, it has been only recently applied to describe human motion. So far, stochastic optimal control has been mainly used in tasks that are already learned, such as reaching to a target. For learning, however, there are only few cases where optimal control has been applied. The main assumptions of stochastic optimal control that restrict its application to tasks after learning are the a priori knowledge of (1) a quadratic cost function (2) a state space model that captures the kinematics and/or dynamics of musculoskeletal system and (3) a measurement equation that models the proprioceptive and/or exteroceptive feedback. Under these assumptions, a sequence of control gains is computed that is optimal with respect to the prespecified cost function. In our work, we relax the assumption of the a priori known cost function and provide a computational framework for modeling tasks that involve learning. Typically, a cost function consists of two parts: one part that models the task constraints, like squared distance to goal at movement endpoint, and one part that integrates over the squared control commands. In learning a task, the first part of this cost function will be adapted. We use an expectation-maximization scheme for learning: the expectation step optimizes the task constraints through gradient descent of a reward function and the maximizing step optimizes the control commands. Our computational model is tested and compared with data given from a behavioral experiment. In this experiment, subjects sit in front of a drawing tablet and look at a screen onto which the drawing-pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. Therefore the cost is a function of this bias. The subjects were asked to reach to the target and minimize this cost over trials. In this behavioral experiment, subjects could learn the bias and thus showed reinforcement learning. With our computational model, we could model the learning process over trials. Particularly, the dependence on parameters of the reward function (Gaussian width) and the modulation of movement variance over time were similar in experiment and model.

[BibTex]

[BibTex]


no image
A Bayesian approach to empirical local linearizations for robotics

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)

Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a ``reasonable'' linear regime of the system, which can be defined from the Hessian at the point of the linearization -- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a ``reasonable'' local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. This approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.

link (url) [BibTex]

link (url) [BibTex]


no image
Do humans plan continuous trajectories in kinematic coordinates?

Hoffmann, H., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
The planning and execution of human arm movements is still unresolved. An ongoing controversy is whether we plan a movement in kinematic coordinates and convert these coordinates with an inverse internal model into motor commands (like muscle activation) or whether we combine a few muscle synergies or equilibrium points to move a hand, e.g., between two targets. The first hypothesis implies that a planner produces a desired end-effector position for all time points; the second relies on the dynamics of the muscular-skeletal system for a given control command to produce a continuous end-effector trajectory. To distinguish between these two possibilities, we use a visuomotor adaptation experiment. Subjects moved a pen on a graphics tablet and observed the pen's mapped position onto a screen (subjects quickly adapted to this mapping). The task was to move a cursor between two points in a given time window. In the adaptation test, we manipulated the velocity profile of the cursor feedback such that the shape of the trajectories remained unchanged (for straight paths). If humans would use a kinematic plan and map at each time the desired end-effector position onto control commands, subjects should adapt to the above manipulation. In a similar experiment, Wolpert et al (1995) showed adaptation to changes in the curvature of trajectories. This result, however, cannot rule out a shift of an equilibrium point or an additional synergy activation between start and end point of a movement. In our experiment, subjects did two sessions, one control without and one with velocity-profile manipulation. To skew the velocity profile of the cursor trajectory, we added to the current velocity, v, the function 0.8*v*cos(pi + pi*x), where x is the projection of the cursor position onto the start-goal line divided by the distance start to goal (x=0 at the start point). As result, subjects did not adapt to this manipulation: for all subjects, the true hand motion was not significantly modified in a direction consistent with adaptation, despite that the visually presented motion differed significantly from the control motion. One may still argue that this difference in motion was insufficient to be processed visually. Thus, as a control experiment, we replayed control and modified motions to the subjects and asked which of the two motions appeared 'more natural'. Subjects chose the unperturbed motion as more natural significantly better than chance. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no adaptation under such transformation.

[BibTex]

[BibTex]


no image
A Versatile Stair-Climbing Robot for Search and Rescue Applications

Eich, M., Grimminger, F., Kirchner, F.

In 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, pages: 35-40, October 2008 (inproceedings)

DOI [BibTex]

DOI [BibTex]

2004


no image
Learning Movement Primitives

Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.

In 11th International Symposium on Robotics Research (ISRR2003), pages: 561-572, (Editors: Dario, P. and Chatila, R.), Springer, ISRR, 2004, clmc (inproceedings)

Abstract
This paper discusses a comprehensive framework for modular motor control based on a recently developed theory of dynamic movement primitives (DMP). DMPs are a formulation of movement primitives with autonomous nonlinear differential equations, whose time evolution creates smooth kinematic control policies. Model-based control theory is used to convert the outputs of these policies into motor commands. By means of coupling terms, on-line modifications can be incorporated into the time evolution of the differential equations, thus providing a rather flexible and reactive framework for motor planning and execution. The linear parameterization of DMPs lends itself naturally to supervised learning from demonstration. Moreover, the temporal, scale, and translation invariance of the differential equations with respect to these parameters provides a useful means for movement recognition. A novel reinforcement learning technique based on natural stochastic policy gradients allows a general approach of improving DMPs by trial and error learning with respect to almost arbitrary optimization criteria. We demonstrate the different ingredients of the DMP approach in various examples, involving skill learning from demonstration on the humanoid robot DB, and learning biped walking from demonstration in simulation, including self-improvement of the movement patterns towards energy efficiency through resonance tuning.

link (url) DOI [BibTex]

2004

link (url) DOI [BibTex]


no image
Learning Composite Adaptive Control for a Class of Nonlinear Systems

Nakanishi, J., Farrell, J. A., Schaal, S.

In IEEE International Conference on Robotics and Automation, pages: 2647-2652, New Orleans, LA, USA, April 2004, 2004, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Tractable Parameter-Free Statistical Learning (Phd Thesis)

D’Souza, A

Department of Computer Science, University of Southern California, Los Angeles, 2004, clmc (phdthesis)

link (url) [BibTex]

link (url) [BibTex]


no image
A framework for learning biped locomotion with dynamic movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

In IEEE-RAS/RSJ International Conference on Humanoid Robots (Humanoids 2004), IEEE, Los Angeles, CA: Nov.10-12, Santa Monica, CA, 2004, clmc (inproceedings)

Abstract
This article summarizes our framework for learning biped locomotion using dynamical movement primitives based on nonlinear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a frequency adaptation algorithm based on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotion controller. Furthermore, we demonstrate that phase resetting contributes to robustness against external perturbations and environmental changes by numerical simulations and experiments.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

In Proceedings of the 11th Joint Symposium on Neural Computation, http://resolver.caltech.edu/CaltechJSNC:2004.poster020, 2004, clmc (inproceedings)

Abstract
One of the major challenges in action generation for robotics and in the understanding of human motor control is to learn the "building blocks of move- ment generation," or more precisely, motor primitives. Recently, Ijspeert et al. [1, 2] suggested a novel framework how to use nonlinear dynamical systems as motor primitives. While a lot of progress has been made in teaching these mo- tor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this poster, we evaluate different reinforcement learning approaches can be used in order to improve the performance of motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and line out how these lead to a novel algorithm which is based on natural policy gradients [3]. We compare this algorithm to previous reinforcement learning algorithms in the context of dynamic motor primitive learning, and show that it outperforms these by at least an order of magnitude. We demonstrate the efficiency of the resulting reinforcement learning method for creating complex behaviors for automous robotics. The studied behaviors will include both discrete, finite tasks such as baseball swings, as well as complex rhythmic patterns as they occur in biped locomotion

[BibTex]

[BibTex]


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

In The Neuroscience of Social Interaction, (1431):199-218, (Editors: Frith, C. D.;Wolpert, D.), Oxford University Press, Oxford, 2004, clmc (inbook)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

link (url) [BibTex]

link (url) [BibTex]

2003


no image
Dynamic movement primitives - A framework for motor control in humans and humanoid robots

Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 4-8, 2003, March 2003, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

link (url) [BibTex]

2003

link (url) [BibTex]


no image
Bayesian backfitting

D’Souza, A., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
We present an algorithm aimed at addressing both computational and analytical intractability of Bayesian regression models which operate in very high-dimensional, usually underconstrained spaces. Several domains of research frequently provide such datasets, including chemometrics [2], and human movement analysis [1]. The literature in nonparametric statistics provides interesting solutions such as Backfitting [3] and Partial Least Squares [4], which are extremely robust and efficient, yet lack a probabilistic interpretation that could place them in the context of current research in statistical learning algorithms that emphasize the estimation of confidence, posterior distributions, and model complexity. In order to achieve numerical robustness and low computational cost, we first derive a novel Bayesian interpretation of Backfitting (BB) as a computationally efficient regression algorithm. BBÕs learning complexity scales linearly with the input dimensionality by decoupling inference among individual input dimensions. We embed BB in an efficient, locally variational model selection mechanism that automatically grows the number of backfitting experts in a mixture-of-experts regression model. We demonstrate the effectiveness of the algorithm in performing principled regularization of model complexity when fitting nonlinear manifolds while avoiding the numerical hazards associated with highly underconstrained problems. We also note that this algorithm appears applicable in various areas of neural computation, e.g., in abstract models of computational neuroscience, or implementations of statistical learning on artificial systems.

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement learning for humanoid robotics

Peters, J., Vijayakumar, S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics. Methods can be coarsely classified into three different categories, i.e., greedy methods, `vanilla' policy gradient methods, and natural gradient methods. We discuss that greedy methods are not likely to scale into the domain humanoid robotics as they are problematic when used with function approximation. `Vanilla' policy gradient methods on the other hand have been successfully applied on real-world robots including at least one humanoid robot. We demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. A derivation of the natural policy gradient is provided, proving that the average policy gradient of Kakade (2002) is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost function with respect to the Fisher information metric under suitable conditions. The algorithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation, and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a promising route for the development of reinforcement learning for truly high dimensionally continuous state-action systems.

link (url) [BibTex]

link (url) [BibTex]


no image
Discovering imitation strategies through categorization of multi-cimensional data

Billard, A., Epars, Y., Schaal, S., Cheng, G.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
An essential problem of imitation is that of determining Ówhat to imitateÓ, i.e. to determine which of the many features of the demonstration are relevant to the task and which should be reproduced. The strategy followed by the imitator can be modeled as a hierarchical optimization system, which minimizes the discrepancy between two multidimensional datasets. We consider imitation of a manipulation task. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different manipulation tasks and controls task reproduction by a full body humanoid robot. or the complete path followed by the demonstrator. We follow a similar taxonomy and apply it to the learning and reproduction of a manipulation task by a humanoid robot. We take the perspective that the features of the movements to imitate are those that appear most frequently, i.e. the invariants in time. The model builds upon previous work [3], [4] and is composed of a hierarchical time delay neural network that extracts invariant features from a manipulation task performed by a human demonstrator. The system analyzes the Carthesian trajectories of the objects and the joint

link (url) [BibTex]

link (url) [BibTex]


no image
Scaling reinforcement learning paradigms for motor learning

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc. This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algorithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy policies are not likely to scale into high-dimensional domains as they are problematic when used with function approximation Ð a must when dealing with continuous domains. We adopt the path of direct policy gradient based policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value iteration based updates. While regular policy gradient methods have demonstrated promising results in the domain of humanoid notor control, we demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. Based on this, it is proved that KakadeÕs Ôaverage natural policy gradientÕ is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the nearest local minimum in Riemannian space of the cost function. The algorithm outperforms nonnatural policy gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems.

link (url) [BibTex]

link (url) [BibTex]


no image
Design and Control of a Leg for the Running Machine PANTER

Berns, K., Grimminger, F., Hochholdinger, U., Kerscher, T., Albiez, J.

In Proceedings of the ICAR 2003–11th International Conference on Advanced Robotics, pages: 1737-1742, 2003 (inproceedings)

[BibTex]

[BibTex]


no image
Learning attractor landscapes for learning motor primitives

Ijspeert, A., Nakanishi, J., Schaal, S.

In Advances in Neural Information Processing Systems 15, pages: 1547-1554, (Editors: Becker, S.;Thrun, S.;Obermayer, K.), Cambridge, MA: MIT Press, 2003, clmc (inproceedings)

Abstract
If globally high dimensional data has locally only low dimensional distributions, it is advantageous to perform a local dimensionality reduction before further processing the data. In this paper we examine several techniques for local dimensionality reduction in the context of locally weighted linear regression. As possible candidates, we derive local versions of factor analysis regression, principle component regression, principle component regression on joint distributions, and partial least squares regression. After outlining the statistical bases of these methods, we perform Monte Carlo simulations to evaluate their robustness with respect to violations of their statistical assumptions. One surprising outcome is that locally weighted partial least squares regression offers the best average results, thus outperforming even factor analysis, the theoretically most appealing of our candidate techniques.Ê

link (url) [BibTex]

link (url) [BibTex]


no image
PANTER-prototype for a fast-running quadruped robot with pneumatic muscles

Albiez, J., Kerscher, T., Grimminger, F., Hochholdinger, U., Dillmann, R., Berns, K.

In Proceedings of the 6th International Conference on Climbing and Walking Robots, pages: 617-624, 2003 (inproceedings)

[BibTex]

[BibTex]


no image
Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., Kawato, M.

In Workshop on Robot Learning by Demonstration, IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
In this paper, we report on our research for learning biped locomotion from human demonstration. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a CPG of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through the movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithm based on phase resetting and entrainment of oscillators. Numerical simulations demonstrate the effectiveness of the proposed locomotion controller.

link (url) [BibTex]

link (url) [BibTex]


no image
Movement planning and imitation by shaping nonlinear attractors

Schaal, S.

In Proceedings of the 12th Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2003, clmc (inproceedings)

Abstract
Given the continuous stream of movements that biological systems exhibit in their daily activities, an account for such versatility and creativity has to assume that movement sequences consist of segments, executed either in sequence or with partial or complete overlap. Therefore, a fundamental question that has pervaded research in motor control both in artificial and biological systems revolves around identifying movement primitives (a.k.a. units of actions, basis behaviors, motor schemas, etc.). What are the fundamental building blocks that are strung together, adapted to, and created for ever new behaviors? This paper summarizes results that led to the hypothesis of Dynamic Movement Primitives (DMP). DMPs are units of action that are formalized as stable nonlinear attractor systems. They are useful for autonomous robotics as they are highly flexible in creating complex rhythmic (e.g., locomotion) and discrete (e.g., a tennis swing) behaviors that can quickly be adapted to the inevitable perturbations of a dy-namically changing, stochastic environment. Moreover, DMPs provide a formal framework that also lends itself to investigations in computational neuroscience. A recent finding that allows creating DMPs with the help of well-understood statistical learning methods has elevated DMPs from a more heuristic to a principled modeling approach, and, moreover, created a new foundation for imitation learning. Theoretical insights, evaluations on a humanoid robot, and behavioral and brain imaging data will serve to outline the framework of DMPs for a general approach to motor control and imitation in robotics and biology.

link (url) [BibTex]

link (url) [BibTex]

2001


no image
Humanoid oculomotor control based on concepts of computational neuroscience

Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.

In Humanoids2001, Second IEEE-RAS International Conference on Humanoid Robots, 2001, clmc (inproceedings)

Abstract
Oculomotor control in a humanoid robot faces similar problems as biological oculomotor systems, i.e., the stabilization of gaze in face of unknown perturbations of the body, selective attention, the complexity of stereo vision and dealing with large information processing delays. In this paper, we suggest control circuits to realize three of the most basic oculomotor behaviors - the vestibulo-ocular and optokinetic reflex (VOR-OKR) for gaze stabilization, smooth pursuit for tracking moving objects, and saccades for overt visual attention. Each of these behaviors was derived from inspirations from computational neuroscience, which proves to be a viable strategy to explore novel control mechanisms for humanoid robotics. Our implementations on a humanoid robot demonstrate good performance of the oculomotor behaviors that appears natural and human-like.

link (url) [BibTex]

2001

link (url) [BibTex]


no image
Trajectory formation for imitation with nonlinear dynamical systems

Ijspeert, A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), pages: 752-757, Weilea, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
This article explores a new approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system (TFS) in the context of a humanoid robot simulation that is part of the Virtual Trainer (VT) project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multi-joint human movements can be encoded successfully, and that this system allows robust modifications of the movement policy through external variables.

link (url) [BibTex]

link (url) [BibTex]


no image
Real-time statistical learning for robotics and human augmentation

Schaal, S., Vijayakumar, S., D’Souza, A., Ijspeert, A., Nakanishi, J.

In International Symposium on Robotics Research, (Editors: Jarvis, R. A.;Zelinsky, A.), Lorne, Victoria, Austrialia Nov.9-12, 2001, clmc (inproceedings)

Abstract
Real-time modeling of complex nonlinear dynamic processes has become increasingly important in various areas of robotics and human augmentation. To address such problems, we have been developing special statistical learning methods that meet the demands of on-line learning, in particular the need for low computational complexity, rapid learning, and scalability to high-dimensional spaces. In this paper, we introduce a novel algorithm that possesses all the necessary properties by combining methods from probabilistic and nonparametric learning. We demonstrate the applicability of our methods for three different applications in humanoid robotics, i.e., the on-line learning of a full-body inverse dynamics model, an inverse kinematics model, and imitation learning. The latter application will also introduce a novel method to shape attractor landscapes of dynamical system by means of statis-tical learning.

link (url) [BibTex]

link (url) [BibTex]


no image
Robust learning of arm trajectories through human demonstration

Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
We present a model, composed of hierarchy of artificial neural networks, for robot learning by demonstration. The model is implemented in a dynamic simulation of a 41 degrees of freedom humanoid for reproducing 3D human motion of the arm. Results show that the model requires few information about the desired trajectory and learns on-line the relevant features of movement. It can generalize across a small set of data to produce a qualitatively good reproduction of the demonstrated trajectory. Finally, it is shown that reproduction of the trajectory after learning is robust against perturbations.

link (url) [BibTex]

link (url) [BibTex]


no image
Overt visual attention for a humanoid robot

Vijayakumar, S., Conradt, J., Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
The goal of our research is to investigate the interplay between oculomotor control, visual processing, and limb control in humans and primates by exploring the computational issues of these processes with a biologically inspired artificial oculomotor system on an anthropomorphic robot. In this paper, we investigate the computational mechanisms for visual attention in such a system. Stimuli in the environment excite a dynamical neural network that implements a saliency map, i.e., a winner-take-all competition between stimuli while simultenously smoothing out noise and suppressing irrelevant inputs. In real-time, this system computes new targets for the shift of gaze, executed by the head-eye system of the robot. The redundant degrees-of- freedom of the head-eye system are resolved through a learned inverse kinematics with optimization criterion. We also address important issues how to ensure that the coordinate system of the saliency map remains correct after movement of the robot. The presented attention system is built on principled modules and generally applicable for any sensory modality.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning inverse kinematics

D’Souza, A., Vijayakumar, S., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), Piscataway, NJ: IEEE, Maui, Hawaii, Oct.29-Nov.3, 2001, clmc (inproceedings)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates learning of inverse kinematics for resolved motion rate control (RMRC) employing an optimization criterion to resolve kinematic redundancies. Our learning approach is based on the key observations that learning an inverse of a non uniquely invertible function can be accomplished by augmenting the input representation to the inverse model and by using a spatially localized learning approach. We apply this strategy to inverse kinematics learning and demonstrate how a recently developed statistical learning algorithm, Locally Weighted Projection Regression, allows efficient learning of inverse kinematic mappings in an incremental fashion even when input spaces become rather high dimensional. The resulting performance of the inverse kinematics is comparable to Liegeois ([1]) analytical pseudo inverse with optimization. Our results are illustrated with a 30 degree-of-freedom humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Biomimetic smooth pursuit based on fast learning of the target dynamics

Shibata, T., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2001), 2001, clmc (inproceedings)

Abstract
Following a moving target with a narrow-view foveal vision system is one of the essential oculomotor behaviors of humans and humanoids. This oculomotor behavior, called ``Smooth Pursuit'', requires accurate tracking control which cannot be achieved by a simple visual negative feedback controller due to the significant delays in visual information processing. In this paper, we present a biologically inspired and control theoretically sound smooth pursuit controller consisting of two cascaded subsystems. One is an inverse model controller for the oculomotor system, and the other is a learning controller for the dynamics of the visual target. The latter controller learns how to predict the target's motion in head coordinates such that tracking performance can be improved. We investigate our smooth pursuit system in simulations and experiments on a humanoid robot. By using a fast on-line statistical learning network, our humanoid oculomotor system is able to acquire high performance smooth pursuit after about 5 seconds of learning despite significant processing delays in the syste

link (url) [BibTex]

link (url) [BibTex]

1997


no image
Learning from demonstration

Schaal, S.

In Advances in Neural Information Processing Systems 9, pages: 1040-1046, (Editors: Mozer, M. C.;Jordan, M.;Petsche, T.), MIT Press, Cambridge, MA, 1997, clmc (inproceedings)

Abstract
By now it is widely accepted that learning a task from scratch, i.e., without any prior knowledge, is a daunting undertaking. Humans, however, rarely attempt to learn from scratch. They extract initial biases as well as strategies how to approach a learning problem from instructions and/or demonstrations of other humans. For learning control, this paper investigates how learning from demonstration can be applied in the context of reinforcement learning. We consider priming the Q-function, the value function, the policy, and the model of the task dynamics as possible areas where demonstrations can speed up learning. In general nonlinear learning problems, only model-based reinforcement learning shows significant speed-up after a demonstration, while in the special case of linear quadratic regulator (LQR) problems, all methods profit from the demonstration. In an implementation of pole balancing on a complex anthropomorphic robot arm, we demonstrate that, when facing the complexities of real signal processing, model-based reinforcement learning offers the most robustness for LQR problems. Using the suggested methods, the robot learns pole balancing in just a single trial after a 30 second long demonstration of the human instructor. 

link (url) [BibTex]

1997

link (url) [BibTex]


no image
Robot learning from demonstration

Atkeson, C. G., Schaal, S.

In Machine Learning: Proceedings of the Fourteenth International Conference (ICML ’97), pages: 12-20, (Editors: Fisher Jr., D. H.), Morgan Kaufmann, Nashville, TN, July 8-12, 1997, 1997, clmc (inproceedings)

Abstract
The goal of robot learning from demonstration is to have a robot learn from watching a demonstration of the task to be performed. In our approach to learning from demonstration the robot learns a reward function from the demonstration and a task model from repeated attempts to perform the task. A policy is computed based on the learned reward function and task model. Lessons learned from an implementation on an anthropomorphic robot arm using a pendulum swing up task include 1) simply mimicking demonstrated motions is not adequate to perform this task, 2) a task planner can use a learned model and reward function to compute an appropriate policy, 3) this model-based planning process supports rapid learning, 4) both parametric and nonparametric models can be learned and used, and 5) incorporating a task level direct learning component, which is non-model-based, in addition to the model-based planner, is useful in compensating for structural modeling errors and slow model learning. 

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for locally weighted learning

Vijayakumar, S., Schaal, S.

In International Conference on Computational Intelligence in Robotics and Automation, pages: 220-225, Monteray, CA, July10-11, 1997, 1997, clmc (inproceedings)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper we suggest a partial revision of the view. Based on empirical studies, it can been observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a local dimensionality reduction as a preprocessing step with a nonparametric learning technique, locally weighted regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set and data of the inverse dynamics of an actual 7 degree-of-freedom anthropomorphic robot arm.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning tasks from a single demonstration

Atkeson, C. G., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA97), 2, pages: 1706-1712, Piscataway, NJ: IEEE, Albuquerque, NM, 20-25 April, 1997, clmc (inproceedings)

Abstract
Learning a complex dynamic robot manoeuvre from a single human demonstration is difficult. This paper explores an approach to learning from demonstration based on learning an optimization criterion from the demonstration and a task model from repeated attempts to perform the task, and using the learned criterion and model to compute an appropriate robot movement. A preliminary version of the approach has been implemented on an anthropomorphic robot arm using a pendulum swing up task as an example

link (url) [BibTex]

link (url) [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

[BibTex]

1991

[BibTex]