Hoffmann, H., Schaal, S.
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment
In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)
Park, D., Hoffmann, H., Pastor, P., Schaal, S.
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields
In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)
Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.
The dual role of uncertainty in force field learning
In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)
Hoffmann, H., Pastor, P., Schaal, S.
Dynamic movement primitives for movement generation motivated by convergent force fields in frog
In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)
Hoffmann, H., Theodorou, E., Schaal, S.
Behavioral experiments on reinforcement learning in human motor control
In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)
Pastor, P., Hoffmann, H., Schaal, S.
Movement generation by learning from demonstration and generalization to new targets
In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)
Park, D., Hoffmann, H., Schaal, S.
Combining dynamic movement primitives and potential fields for online obstacle avoidance
In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)
Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.
Computational model for movement learning under uncertain cost
In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)
Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.
A Bayesian approach to empirical local linearizations for robotics
In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)
Hoffmann, H., Schaal, S.
Do humans plan continuous trajectories in kinematic coordinates?
In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)
Schaal, S.
Dynamic movement primitives - A framework for motor control in humans and humanoid robots
In The International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 4-8, 2003, March 2003, clmc (inproceedings)
D’Souza, A., Vijayakumar, S., Schaal, S.
Bayesian backfitting
In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)
Peters, J., Vijayakumar, S., Schaal, S.
Reinforcement learning for humanoid robotics
In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)
Billard, A., Epars, Y., Schaal, S., Cheng, G.
Discovering imitation strategies through categorization of multi-cimensional data
In IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)
Peters, J., Vijayakumar, S., Schaal, S.
Scaling reinforcement learning paradigms for motor learning
In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)
Ijspeert, A., Nakanishi, J., Schaal, S.
Learning attractor landscapes for learning motor primitives
In Advances in Neural Information Processing Systems 15, pages: 1547-1554, (Editors: Becker, S.;Thrun, S.;Obermayer, K.), Cambridge, MA: MIT Press, 2003, clmc (inproceedings)
Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., Kawato, M.
Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives
In Workshop on Robot Learning by Demonstration, IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)
Schaal, S.
Movement planning and imitation by shaping nonlinear attractors
In Proceedings of the 12th Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2003, clmc (inproceedings)
Schaal, S., Atkeson, C. G.
Robot learning by nonparametric regression
In Proceedings of the International Conference on Intelligent Robots and Systems (IROS’94), pages: 478-485, Munich Germany, 1994, clmc (inproceedings)
Schaal, S., Atkeson, C. G.
Assessing the quality of learned local models
In Advances in Neural Information Processing Systems 6, pages: 160-167, (Editors: Cowan, J.;Tesauro, G.;Alspector, J.), Morgan Kaufmann, San Mateo, CA, 1994, clmc (inproceedings)
Schaal, S., Atkeson, C. G.
Memory-based robot learning
In IEEE International Conference on Robotics and Automation, 3, pages: 2928-2933, San Diego, CA, 1994, clmc (inproceedings)
Schaal, S.
Nonparametric regression for learning
In Conference on Adaptive Behavior and Learning, Center of Interdisciplinary Research (ZIF) Bielefeld Germany, also technical report TR-H-098 of the ATR Human Information Processing Research Laboratories, 1994, clmc (inproceedings)
Schaal, S., Atkeson, C. G., Botros, S.
What should be learned?
In Proceedings of Seventh Yale Workshop on Adaptive and Learning Systems, pages: 199-204, New Haven, CT, May 20-22, 1992, clmc (inproceedings)