Header logo is am


2018


Thumb xl screen shot 2018 04 19 at 14.57.08
Motion-based Object Segmentation based on Dense RGB-D Scene Flow

Shao, L., Shah, P., Dwaracherla, V., Bohg, J.

IEEE Robotics and Automation Letters, 3(4):3797-3804, IEEE, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2018 (conference)

Abstract
Given two consecutive RGB-D images, we propose a model that estimates a dense 3D motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes often consist of a set of rigidly moving objects. Our model jointly estimates (i) the segmentation of the scene into an unknown but finite number of objects, (ii) the motion trajectories of these objects and (iii) the object scene flow. We employ an hourglass, deep neural network architecture. In the encoding stage, the RGB and depth images undergo spatial compression and correlation. In the decoding stage, the model outputs three images containing a per-pixel estimate of the corresponding object center as well as object translation and rotation. This forms the basis for inferring the object segmentation and final object scene flow. To evaluate our model, we generated a new and challenging, large-scale, synthetic dataset that is specifically targeted at robotic manipulation: It contains a large number of scenes with a very diverse set of simultaneously moving 3D objects and is recorded with a commonly-used RGB-D camera. In quantitative experiments, we show that we significantly outperform state-of-the-art scene flow and motion-segmentation methods. In qualitative experiments, we show how our learned model transfers to challenging real-world scenes, visually generating significantly better results than existing methods.

Project Page arXiv DOI [BibTex]

2018

Project Page arXiv DOI [BibTex]


Thumb xl teaser image
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Thumb xl meta learning overview
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

pdf video code [BibTex]

pdf video code [BibTex]


Thumb xl learning ct w asm block diagram detailed
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


Thumb xl amd intentiongan
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., Lim, J.

In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)

pdf video [BibTex]

2017

pdf video [BibTex]


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Thumb xl teaser
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Learning optimal gait parameters and impedance profiles for legged locomotion

Heijmink, E., Radulescu, A., Ponton, B., Barasuol, V., Caldwell, D., Semini, C.

Proceedings International Conference on Humanoid Robots, IEEE, 2017 IEEE-RAS 17th International Conference on Humanoid Robots, November 2017 (conference)

Abstract
The successful execution of complex modern robotic tasks often relies on the correct tuning of a large number of parameters. In this paper we present a methodology for improving the performance of a trotting gait by learning the gait parameters, impedance profile and the gains of the control architecture. We show results on a set of terrains, for various speeds using a realistic simulation of a hydraulically actuated system. Our method achieves a reduction in the gait's mechanical energy consumption during locomotion of up to 26%. The simulation results are validated in experimental trials on the hardware system.

paper [BibTex]

paper [BibTex]


no image
A New Data Source for Inverse Dynamics Learning

Kappler, D., Meier, F., Ratliff, N., Schaal, S.

In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)

[BibTex]

[BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2017 08 01 at 15.41.10
On the relevance of grasp metrics for predicting grasp success

Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.

In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted

Abstract
We aim to reliably predict whether a grasp on a known object is successful before it is executed in the real world. There is an entire suite of grasp metrics that has already been developed which rely on precisely known contact points between object and hand. However, it remains unclear whether and how they may be combined into a general purpose grasp stability predictor. In this paper, we analyze these questions by leveraging a large scale database of simulated grasps on a wide variety of objects. For each grasp, we compute the value of seven metrics. Each grasp is annotated by human subjects with ground truth stability labels. Given this data set, we train several classification methods to find out whether there is some underlying, non-trivial structure in the data that is difficult to model manually but can be learned. Quantitative and qualitative results show the complexity of the prediction problem. We found that a good prediction performance critically depends on using a combination of metrics as input features. Furthermore, non-parametric and non-linear classifiers best capture the structure in the data.

Project Page [BibTex]

Project Page [BibTex]


no image
Local Bayesian Optimization of Motor Skills

Akrour, R., Sorokin, D., Peters, J., Neumann, G.

Proceedings of the 34th International Conference on Machine Learning, 70, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl pilqr cover
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.

Proceedings of the 34th International Conference on Machine Learning, 70, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl apollo system2 croped
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Thumb xl learning ct block diagram v2
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Thumb xl cover
Path Integral Guided Policy Search

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., Levine, S.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)

pdf video [BibTex]

pdf video [BibTex]

2014


Thumb xl screen shot 2014 07 09 at 15.49.27
Robot Arm Pose Estimation through Pixel-Wise Part Classification

Bohg, J., Romero, J., Herzog, A., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA) 2014, pages: 3143-3150, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (inproceedings)

Abstract
We propose to frame the problem of marker-less robot arm pose estimation as a pixel-wise part classification problem. As input, we use a depth image in which each pixel is classified to be either from a particular robot part or the background. The classifier is a random decision forest trained on a large number of synthetically generated and labeled depth images. From all the training samples ending up at a leaf node, a set of offsets is learned that votes for relative joint positions. Pooling these votes over all foreground pixels and subsequent clustering gives us an estimate of the true joint positions. Due to the intrinsic parallelism of pixel-wise classification, this approach can run in super real-time and is more efficient than previous ICP-like methods. We quantitatively evaluate the accuracy of this approach on synthetic data. We also demonstrate that the method produces accurate joint estimates on real data despite being purely trained on synthetic data.

video code pdf DOI Project Page [BibTex]

2014

video code pdf DOI Project Page [BibTex]


no image
A Self-Tuning LQR Approach Demonstrated on an Inverted Pendulum

Trimpe, S., Millane, A., Doessegger, S., D’Andrea, R.

In Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014 (inproceedings)

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


no image
Learning coupling terms for obstacle avoidance

Rai, A., Meier, F., Ijspeert, A., Schaal, S.

In International Conference on Humanoid Robotics, pages: 512-518, IEEE, 2014, clmc (inproceedings)

Abstract
Autonomous manipulation in dynamic environments is important for robots to perform everyday tasks. For this, a manipulator should be capable of interpreting the environment and planning an appropriate movement. At least, two possible approaches exist for this in literature. Usually, a planning system is used to generate a complex movement plan that satisfies all constraints. Alternatively, a simple plan could be chosen and modified with sensory feedback to accommodate additional constraints by equipping the controller with features that remain dormant most of the time, except when specific situations arise. Dynamic Movement Primitives (DMPs) form a robust and versatile starting point for such a controller that can be modified online using a non-linear term, called the coupling term. This can prove to be a fast and reactive way of obstacle avoidance in a human-like fashion. We propose a method to learn this coupling term from human demonstrations starting with simple features and making it more robust to avoid a larger range of obstacles. We test the ability of our coupling term to model different kinds of obstacle avoidance behaviours in humans and use this learnt coupling term to avoid obstacles in a reactive manner. This line of research aims at pushing the boundary of reactive control strategies to more complex scenarios, such that complex and usually computationally more expensive planning methods can be avoided as much as possible.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl gene
Generalization of the tacit learning controller based on periodic tuning functions

Berenz, V., Hayashibe, M., Alnajjar, F., Shimoda, S.

In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 893-898, 2014 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


no image
Stability Analysis of Distributed Event-Based State Estimation

Trimpe, S.

In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, 2014 (inproceedings)

Abstract
An approach for distributed and event-based state estimation that was proposed in previous work [1] is analyzed and extended to practical networked systems in this paper. Multiple sensor-actuator-agents observe a dynamic process, sporadically exchange their measurements over a broadcast network according to an event-based protocol, and estimate the process state from the received data. The event-based approach was shown in [1] to mimic a centralized Luenberger observer up to guaranteed bounds, under the assumption of identical estimates on all agents. This assumption, however, is unrealistic (it is violated by a single packet drop or slight numerical inaccuracy) and removed herein. By means of a simulation example, it is shown that non-identical estimates can actually destabilize the overall system. To achieve stability, the event-based communication scheme is supplemented by periodic (but infrequent) exchange of the agentsâ?? estimates and reset to their joint average. When the local estimates are used for feedback control, the stability guarantee for the estimation problem extends to the event-based control system.

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


no image
Dual Execution of Optimized Contact Interaction Trajectories

Toussaint, M., Ratliff, N., Bohg, J., Righetti, L., Englert, P., Schaal, S.

In 2014 IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 47-54, IEEE, Chicago, USA, 2014 (inproceedings)

Abstract
Efficient manipulation requires contact to reduce uncertainty. The manipulation literature refers to this as funneling: a methodology for increasing reliability and robustness by leveraging haptic feedback and control of environmental interaction. However, there is a fundamental gap between traditional approaches to trajectory optimization and this concept of robustness by funneling: traditional trajectory optimizers do not discover force feedback strategies. From a POMDP perspective, these behaviors could be regarded as explicit observation actions planned to sufficiently reduce uncertainty thereby enabling a task. While we are sympathetic to the full POMDP view, solving full continuous-space POMDPs in high-dimensions is hard. In this paper, we propose an alternative approach in which trajectory optimization objectives are augmented with new terms that reward uncertainty reduction through contacts, explicitly promoting funneling. This augmentation shifts the responsibility of robustness toward the actual execution of the optimized trajectories. Directly tracing trajectories through configuration space would lose all robustness-dual execution achieves robustness by devising force controllers to reproduce the temporal interaction profile encoded in the dual solution of the optimization problem. This work introduces dual execution in depth and analyze its performance through robustness experiments in both simulation and on a real-world robotic platform.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning and Exploration in a Novel Dimensionality-Reduction Task

Ebert, J, Kim, S, Schweighofer, N., Sternad, D, Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2009), Amsterdam, Netherlands, 2014 (inproceedings)

[BibTex]

[BibTex]


no image
Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics

Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.

In 2014 IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 981-988, IEEE, Chicago, USA, 2014 (inproceedings)

Abstract
Recently several hierarchical inverse dynamics controllers based on cascades of quadratic programs have been proposed for application on torque controlled robots. They have important theoretical benefits but have never been implemented on a torque controlled robot where model inaccuracies and real-time computation requirements can be problematic. In this contribution we present an experimental evaluation of these algorithms in the context of balance control for a humanoid robot. The presented experiments demonstrate the applicability of the approach under real robot conditions (i.e. model uncertainty, estimation errors, etc). We propose a simplification of the optimization problem that allows us to decrease computation time enough to implement it in a fast torque control loop. We implement a momentum-based balance controller which shows robust performance in face of unknown disturbances, even when the robot is standing on only one foot. In a second experiment, a tracking task is evaluated to demonstrate the performance of the controller with more complicated hierarchies. Our results show that hierarchical inverse dynamics controllers can be used for feedback control of humanoid robots and that momentum-based balance control can be efficiently implemented on a real robot.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Full Dynamics LQR Control of a Humanoid Robot: An Experimental Study on Balancing and Squatting

Mason, S., Righetti, L., Schaal, S.

In 2014 IEEE-RAS International Conference on Humanoid Robots, pages: 374-379, IEEE, Madrid, Spain, 2014 (inproceedings)

Abstract
Humanoid robots operating in human environments require whole-body controllers that can offer precise tracking and well-defined disturbance rejection behavior. In this contribution, we propose an experimental evaluation of a linear quadratic regulator (LQR) using a linearization of the full robot dynamics together with the contact constraints. The advantage of the controller is that it explicitly takes into account the coupling between the different joints to create optimal feedback controllers for whole-body control. We also propose a method to explicitly regulate other tasks of interest, such as the regulation of the center of mass of the robot or its angular momentum. In order to evaluate the performance of linear optimal control designs in a real-world scenario (model uncertainty, sensor noise, imperfect state estimation, etc), we test the controllers in a variety of tracking and balancing experiments on a torque controlled humanoid (e.g. balancing, split plane balancing, squatting, pushes while squatting, and balancing on a wheeled platform). The proposed control framework shows a reliable push recovery behavior competitive with more sophisticated balance controllers, rejecting impulses up to 11.7 Ns with peak forces of 650 N, with the added advantage of great computational simplicity. Furthermore, the controller is able to track squatting trajectories up to 1 Hz without relinearization, suggesting that the linearized dynamics is sufficient for significant ranges of motion.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
State Estimation for a Humanoid Robot

Rotella, N., Bloesch, M., Righetti, L., Schaal, S.

In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 952-958, IEEE, Chicago, USA, 2014 (inproceedings)

Abstract
This paper introduces a framework for state estimation on a humanoid robot platform using only common proprioceptive sensors and knowledge of leg kinematics. The presented approach extends that detailed in prior work on a point-foot quadruped platform by adding the rotational constraints imposed by the humanoid's flat feet. As in previous work, the proposed Extended Kalman Filter accommodates contact switching and makes no assumptions about gait or terrain, making it applicable on any humanoid platform for use in any task. A nonlinear observability analysis is performed on both the point-foot and flat-foot filters and it is concluded that the addition of rotational constraints significantly simplifies singular cases and improves the observability characteristics of the system. Results on a simulated walking dataset demonstrate the performance gain of the flat-foot filter as well as confirm the results of the presented observability analysis.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2013


Thumb xl impact battery
Probabilistic Object Tracking Using a Range Camera

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3195-3202, IEEE, November 2013 (inproceedings)

Abstract
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the current object pose. Depending on whether a robot or a human manipulates the object, we employ a process model with or without knowledge of control inputs. Observations are obtained from a range camera. As opposed to previous object tracking methods, we explicitly model self-occlusions and occlusions from the environment, e.g, the human or robotic hand. This leads to a strongly non-linear observation model and additional dependencies in the Bayesian network. We employ a Rao-Blackwellised particle filter to compute an estimate of the object pose at every time step. In a set of experiments, we demonstrate the ability of our method to accurately and robustly track the object pose in real-time while it is being manipulated by a human or a robot.

arXiv Video Code Video DOI Project Page [BibTex]

2013

arXiv Video Code Video DOI Project Page [BibTex]


Thumb xl featureextraction
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

pdf [BibTex]

pdf [BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

[BibTex]

[BibTex]


Thumb xl synergy
The functional role of automatic body response in shaping voluntary actions based on muscle synergy theory

Alnajjar, F. S., Berenz, V., Shimoda, S.

In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on, pages: 1230-1233, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


Thumb xl hri
Coaching robots with biosignals based on human affective social behaviors

Suzuki, K., Gruebler, A., Berenz, V.

In ACM/IEEE International Conference on Human-Robot Interaction, HRI 2013, Tokyo, Japan, March 3-6, 2013, pages: 419-420, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2015 08 23 at 00.29.36
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


Thumb xl kthexecution
Mind the gap - robotic grasping under incomplete observation

Bohg, J., Johnson-Roberson, M., Leon, B., Felip, J., Gratal, X., Bergstrom, N., Kragic, D., Morales, A.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 686-693, May 2011 (inproceedings)

Abstract
We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

pdf video code data DOI Project Page [BibTex]

2011

pdf video code data DOI Project Page [BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
An Experimental Demonstration of a Distributed and Event-based State Estimation Algorithm

(Best Interactive Paper Award (top out of 450))

Trimpe, S., D’Andrea, R.

In Proceedings of the 18th IFAC World Congress, 2011 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

PDF [BibTex]

PDF [BibTex]


Thumb xl multi modal 2
Enhanced visual scene understanding through human-robot dialog

Johnson-Roberson, M., Bohg, J., Skantze, G., Gustafson, J., Carlson, R., Rasolzadeh, B., Kragic, D.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3342-3348, 2011 (inproceedings)

Abstract
We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a `human in the loop' where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

pdf video DOI Project Page [BibTex]

pdf video DOI Project Page [BibTex]


Thumb xl battery2
Risk and gain battery management for self-docking mobile robots

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pages: 1766-1771, 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]