Header logo is am


2018


Motion-based Object Segmentation based on Dense RGB-D Scene Flow
Motion-based Object Segmentation based on Dense RGB-D Scene Flow

Shao, L., Shah, P., Dwaracherla, V., Bohg, J.

IEEE Robotics and Automation Letters, 3(4):3797-3804, IEEE, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2018 (conference)

Abstract
Given two consecutive RGB-D images, we propose a model that estimates a dense 3D motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes often consist of a set of rigidly moving objects. Our model jointly estimates (i) the segmentation of the scene into an unknown but finite number of objects, (ii) the motion trajectories of these objects and (iii) the object scene flow. We employ an hourglass, deep neural network architecture. In the encoding stage, the RGB and depth images undergo spatial compression and correlation. In the decoding stage, the model outputs three images containing a per-pixel estimate of the corresponding object center as well as object translation and rotation. This forms the basis for inferring the object segmentation and final object scene flow. To evaluate our model, we generated a new and challenging, large-scale, synthetic dataset that is specifically targeted at robotic manipulation: It contains a large number of scenes with a very diverse set of simultaneously moving 3D objects and is recorded with a commonly-used RGB-D camera. In quantitative experiments, we show that we significantly outperform state-of-the-art scene flow and motion-segmentation methods. In qualitative experiments, we show how our learned model transfers to challenging real-world scenes, visually generating significantly better results than existing methods.

Project Page arXiv DOI [BibTex]

2018

Project Page arXiv DOI [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Online Learning of a Memory for Learning Rates
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

pdf video code [BibTex]

pdf video code [BibTex]


Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2013


Probabilistic Object Tracking Using a Range Camera
Probabilistic Object Tracking Using a Range Camera

Wüthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3195-3202, IEEE, November 2013 (inproceedings)

Abstract
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the current object pose. Depending on whether a robot or a human manipulates the object, we employ a process model with or without knowledge of control inputs. Observations are obtained from a range camera. As opposed to previous object tracking methods, we explicitly model self-occlusions and occlusions from the environment, e.g, the human or robotic hand. This leads to a strongly non-linear observation model and additional dependencies in the Bayesian network. We employ a Rao-Blackwellised particle filter to compute an estimate of the object pose at every time step. In a set of experiments, we demonstrate the ability of our method to accurately and robustly track the object pose in real-time while it is being manipulated by a human or a robot.

arXiv Video Code Video DOI Project Page [BibTex]

2013

arXiv Video Code Video DOI Project Page [BibTex]


Learning and Optimization with Submodular Functions
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


Hypothesis Testing Framework for Active Object Detection
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

pdf [BibTex]

pdf [BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

[BibTex]

[BibTex]


The functional role of automatic body response in shaping voluntary actions based on muscle synergy theory
The functional role of automatic body response in shaping voluntary actions based on muscle synergy theory

Alnajjar, F. S., Berenz, V., Shimoda, S.

In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on, pages: 1230-1233, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


Coaching robots with biosignals based on human affective social behaviors
Coaching robots with biosignals based on human affective social behaviors

Suzuki, K., Gruebler, A., Berenz, V.

In ACM/IEEE International Conference on Human-Robot Interaction, HRI 2013, Tokyo, Japan, March 3-6, 2013, pages: 419-420, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


Fusing visual and tactile sensing for 3-D object reconstruction while grasping
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


Grasping familiar objects using shape context
Grasping familiar objects using shape context

Bohg, J., Kragic, D.

In Advanced Robotics, 2009. ICAR 2009. International Conference on, pages: 1-6, 2009 (inproceedings)

Abstract
We present work on vision based robotic grasping. The proposed method relies on extracting and representing the global contour of an object in a monocular image. A suitable grasp is then generated using a learning framework where prototypical grasping points are learned from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labeled synthetic images. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects. Furthermore, we will show how our representation supports the inference of a full grasp configuration.

pdf slides [BibTex]

2009

pdf slides [BibTex]


Sensory-objects network driven by intrinsic motivation for survival abilities
Sensory-objects network driven by intrinsic motivation for survival abilities

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on, pages: 871-876, 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
A Limiting Property of the Matrix Exponential with Application to Multi-loop Control

Trimpe, S., D’Andrea, R.

In Proceedings of the Joint 48th IEEE Conference on Decision (CDC) and Control and 28th Chinese Control Conference, 2009 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path integral-based stochastic optimal control for rigid body dynamics

Theodorou, E. A., Buchli, J., Schaal, S.

In Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL ’09. IEEE Symposium on, pages: 219-225, 2009, clmc (inproceedings)

Abstract
Recent advances on path integral stochastic optimal control [1],[2] provide new insights in the optimal control of nonlinear stochastic systems which are linear in the controls, with state independent and time invariant control transition matrix. Under these assumptions, the Hamilton-Jacobi-Bellman (HJB) equation is formulated and linearized with the use of the logarithmic transformation of the optimal value function. The resulting HJB is a linear second order partial differential equation which is solved by an approximation based on the Feynman-Kac formula [3]. In this work we review the theory of path integral control and derive the linearized HJB equation for systems with state dependent control transition matrix. In addition we derive the path integral formulation for the general class of systems with state dimensionality that is higher than the dimensionality of the controls. Furthermore, by means of a modified inverse dynamics controller, we apply path integral stochastic optimal control over the new control space. Simulations illustrate the theoretical results. Future developments and extensions are discussed.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning locomotion over rough terrain using terrain templates

Kalakrishnan, M., Buchli, J., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 167-172, 2009, clmc (inproceedings)

Abstract
We address the problem of foothold selection in robotic legged locomotion over very rough terrain. The difficulty of the problem we address here is comparable to that of human rock-climbing, where foot/hand-hold selection is one of the most critical aspects. Previous work in this domain typically involves defining a reward function over footholds as a weighted linear combination of terrain features. However, a significant amount of effort needs to be spent in designing these features in order to model more complex decision functions, and hand-tuning their weights is not a trivial task. We propose the use of terrain templates, which are discretized height maps of the terrain under a foothold on different length scales, as an alternative to manually designed features. We describe an algorithm that can simultaneously learn a small set of templates and a foothold ranking function using these templates, from expert-demonstrated footholds. Using the LittleDog quadruped robot, we experimentally show that the use of terrain templates can produce complex ranking functions with higher performance than standard terrain features, and improved generalization to unseen terrain.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
CESAR: A lunar crater exploration and sample return robot

Schwendner, J., Grimminger, F., Bartsch, S., Kaupisch, T., Yüksel, M., Bresser, A., Akpo, J. B., Seydel, M. K. -., Dieterle, A., Schmidt, S., Kirchner, F.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3355-3360, October 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Concept Evaluation of a New Biologically Inspired Robot “Littleape”

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., Kirchner, F.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 589–594, IROS’09, IEEE Press, 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Compact models of motor primitive variations for predictible reaching and obstacle avoidance

Stulp, F., Oztop, E., Pastor, P., Beetz, M., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
over and over again. This regularity allows humans and robots to reuse existing solutions for known recurring tasks. We expect that reusing a set of standard solutions to solve similar tasks will facilitate the design and on-line adaptation of the control systems of robots operating in human environments. In this paper, we derive a set of standard solutions for reaching behavior from human motion data. We also derive stereotypical reaching trajectories for variations of the task, in which obstacles are present. These stereotypical trajectories are then compactly represented with Dynamic Movement Primitives. On the humanoid robot Sarcos CB, this approach leads to reproducible, predictable, and human-like reaching motions.

link (url) [BibTex]

link (url) [BibTex]


no image
Human optimization strategies under reward feedback

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2009), Waikoloa, Hawaii, 2009, 2009, clmc (inproceedings)

Abstract
Many hypothesis on human movement generation have been cast into an optimization framework, implying that movements are adapted to optimize a single quantity, like, e.g., jerk, end-point variance, or control cost. However, we still do not understand how humans actually learn when given only a cost or reward feedback at the end of a movement. Such a reinforcement learning setting has been extensively explored theoretically in engineering and computer science, but in human movement control, hardly any experiment studied movement learning under reward feedback. We present experiments probing which computational strategies humans use to optimize a movement under a continuous reward function. We present two experimental paradigms. The first paradigm mimics a ball-hitting task. Subjects (n=12) sat in front of a computer screen and moved a stylus on a tablet towards an unknown target. This target was located on a line that the subjects had to cross. During the movement, visual feedback was suppressed. After the movement, a reward was displayed graphically as a colored bar. As reward, we used a Gaussian function of the distance between the target location and the point of line crossing. We chose such a function since in sensorimotor tasks, the cost or loss function that humans seem to represent is close to an inverted Gaussian function (Koerding and Wolpert 2004). The second paradigm mimics pocket billiards. On the same experimental setup as above, the computer screen displayed a pocket (two bars), a white disk, and a green disk. The goal was to hit with the white disk the green disk (as in a billiard collision), such that the green disk moved into the pocket. Subjects (n=8) manipulated with the stylus the white disk to effectively choose start point and movement direction. Reward feedback was implicitly given as hitting or missing the pocket with the green disk. In both paradigms, subjects increased the average reward over trials. The surprising result was that in these experiments, humans seem to prefer a strategy that uses a reward-weighted average over previous movements instead of gradient ascent. The literature on reinforcement learning is dominated by gradient-ascent methods. However, our computer simulations and theoretical analysis revealed that reward-weighted averaging is the more robust choice given the amount of movement variance observed in humans. Apparently, humans choose an optimization strategy that is suitable for their own movement variance.

[BibTex]

[BibTex]


no image
Concept evaluation of a new biologically inspired robot “LittleApe”

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., Kirchner, F.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 589-594, October 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Bayesian Methods for Autonomous Learning Systems (Phd Thesis)

Ting, J.

Department of Computer Science, University of Southern California, Los Angeles, CA, 2009, clmc (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)Ñindeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsÑthe heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

link (url) [BibTex]

link (url) [BibTex]


no image
Proprioceptive control of a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In 2008 IEEE International Conference on Robotics and Biomimetics, pages: 774-779, February 2009 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
The SL simulation and real-time control software package

Schaal, S.

University of Southern California, Los Angeles, CA, 2009, clmc (techreport)

Abstract
SL was originally developed as a Simulation Laboratory software package to allow creating complex rigid-body dynamics simulations with minimal development times. It was meant to complement a real-time robotics setup such that robot programs could first be debugged in simulation before trying them on the actual robot. For this purpose, the motor control setup of SL was copied from our experience with real-time robot setups with vxWorks (Windriver Systems, Inc.)â??indeed, more than 90% of the code is identical to the actual robot software, as will be explained later in detail. As a result, SL is divided into three software components: 1) the generic code that is shared by the actual robot and the simulation, 2) the robot specific code, and 3) the simulation specific code. The robot specific code is tailored to the robotic environments that we have experienced over the years, in particular towards VME-based multi-processor real-time operating systems. The simulation specific code has all the components for OpenGL graphics simulations and mimics the robot multi-processor environment in simple C-code. Importantly, SL can be used stand-alone for creating graphics an-imationsâ??the heritage from real-time robotics does not restrict the complexity of possible simulations. This technical report describes SL in detail and can serve as a manual for new users of SL.

link (url) [BibTex]

link (url) [BibTex]


no image
Learning and generalization of motor skills by learning from demonstration

Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2009), Kobe, Japan, May 12-19, 2009, 2009, clmc (inproceedings)

Abstract
We provide a general approach for learning robotic motor skills from human demonstration. To represent an observed movement, a non-linear differential equation is learned such that it reproduces this movement. Based on this representation, we build a library of movements by labeling each recorded movement according to task and context (e.g., grasping, placing, and releasing). Our differential equation is formulated such that generalization can be achieved simply by adapting a start and a goal parameter in the equation to the desired position values of a movement. For object manipulation, we present how our framework extends to the control of gripper orientation and finger position. The feasibility of our approach is demonstrated in simulation as well as on a real robot. The robot learned a pick-and-place operation and a water-serving task and could generalize these tasks to novel situations.

link (url) [BibTex]

link (url) [BibTex]


no image
Compliant quadruped locomotion over rough terrain

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 814-820, 2009, clmc (inproceedings)

Abstract
Many critical elements for statically stable walking for legged robots have been known for a long time, including stability criteria based on support polygons, good foothold selection, recovery strategies to name a few. All these criteria have to be accounted for in the planning as well as the control phase. Most legged robots usually employ high gain position control, which means that it is crucially important that the planned reference trajectories are a good match for the actual terrain, and that tracking is accurate. Such an approach leads to conservative controllers, i.e. relatively low speed, ground speed matching, etc. Not surprisingly such controllers are not very robust - they are not suited for the real world use outside of the laboratory where the knowledge of the world is limited and error prone. Thus, to achieve robust robotic locomotion in the archetypical domain of legged systems, namely complex rough terrain, where the size of the obstacles are in the order of leg length, additional elements are required. A possible solution to improve the robustness of legged locomotion is to maximize the compliance of the controller. While compliance is trivially achieved by reduced feedback gains, for terrain requiring precise foot placement (e.g. climbing rocks, walking over pegs or cracks) compliance cannot be introduced at the cost of inferior tracking. Thus, model-based control and - in contrast to passive dynamic walkers - active balance control is required. To achieve these objectives, in this paper we add two crucial elements to legged locomotion, i.e., floating-base inverse dynamics control and predictive force control, and we show that these elements increase robustness in face of unknown and unanticipated perturbations (e.g. obstacles). Furthermore, we introduce a novel line-based COG trajectory planner, which yields a simpler algorithm than traditional polygon based methods and creates the appropriate input to our control system.We show results from bot- h simulation and real world of a robotic dog walking over non-perceived obstacles and rocky terrain. The results prove the effectivity of the inverse dynamics/force controller. The presented results show that we have all elements needed for robust all-terrain locomotion, which should also generalize to other legged systems, e.g., humanoid robots.

link (url) [BibTex]

link (url) [BibTex]


no image
Inertial parameter estimation of floating-base humanoid systems using partial force sensing

Mistry, M., Schaal, S., Yamane, K.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
Recently, several controllers have been proposed for humanoid robots which rely on full-body dynamic models. The estimation of inertial parameters from data is a critical component for obtaining accurate models for control. However, floating base systems, such as humanoid robots, incur added challenges to this task (e.g. contact forces must be measured, contact states can change, etc.) In this work, we outline a theoretical framework for whole body inertial parameter estimation, including the unactuated floating base. Using a least squares minimization approach, conducted within the nullspace of unmeasured degrees of freedom, we are able to use a partial force sensor set for full-body estimation, e.g. using only joint torque sensors, allowing for estimation when contact force measurement is unavailable or unreliable (e.g. due to slipping, rolling contacts, etc.). We also propose how to determine the theoretical minimum force sensor set for full body estimation, and discuss the practical limitations of doing so.

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

2008

link (url) [BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

link (url) [BibTex]

link (url) [BibTex]


no image
Behavioral experiments on reinforcement learning in human motor control

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Reinforcement learning (RL) - learning solely based on reward or cost feedback - is widespread in robotics control and has been also suggested as computational model for human motor control. In human motor control, however, hardly any experiment studied reinforcement learning. Here, we study learning based on visual cost feedback in a reaching task and did three experiments: (1) to establish a simple enough experiment for RL, (2) to study spatial localization of RL, and (3) to study the dependence of RL on the cost function. In experiment (1), subjects sit in front of a drawing tablet and look at a screen onto which the drawing pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. We choose as cost the squared distance between target and virtual pen position at the target line. Above a threshold value, the cost was fixed at this value. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. As result, subjects could learn the bias, and thus, showed reinforcement learning. In experiment (2), we randomly altered the target position between three different locations (three different directions from start point: -45, 0, 45). For each direction, we chose a different bias. As result, subjects learned all three bias values simultaneously. Thus, RL can be spatially localized. In experiment (3), we varied the sensitivity of the cost function by multiplying the squared distance with a constant value C, while keeping the same cut-off threshold. As in experiment (2), we had three target locations. We assigned to each location a different C value (this assignment was randomized between subjects). Since subjects learned the three locations simultaneously, we could directly compare the effect of the different cost functions. As result, we found an optimal C value; if C was too small (insensitive cost), learning was slow; if C was too large (narrow cost valley), the exploration time was longer and learning delayed. Thus, reinforcement learning in human motor control appears to be sen

[BibTex]

[BibTex]


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Computational model for movement learning under uncertain cost

Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
Stochastic optimal control is a framework for computing control commands that lead to an optimal behavior under a given cost. Despite the long history of optimal control in engineering, it has been only recently applied to describe human motion. So far, stochastic optimal control has been mainly used in tasks that are already learned, such as reaching to a target. For learning, however, there are only few cases where optimal control has been applied. The main assumptions of stochastic optimal control that restrict its application to tasks after learning are the a priori knowledge of (1) a quadratic cost function (2) a state space model that captures the kinematics and/or dynamics of musculoskeletal system and (3) a measurement equation that models the proprioceptive and/or exteroceptive feedback. Under these assumptions, a sequence of control gains is computed that is optimal with respect to the prespecified cost function. In our work, we relax the assumption of the a priori known cost function and provide a computational framework for modeling tasks that involve learning. Typically, a cost function consists of two parts: one part that models the task constraints, like squared distance to goal at movement endpoint, and one part that integrates over the squared control commands. In learning a task, the first part of this cost function will be adapted. We use an expectation-maximization scheme for learning: the expectation step optimizes the task constraints through gradient descent of a reward function and the maximizing step optimizes the control commands. Our computational model is tested and compared with data given from a behavioral experiment. In this experiment, subjects sit in front of a drawing tablet and look at a screen onto which the drawing-pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. Therefore the cost is a function of this bias. The subjects were asked to reach to the target and minimize this cost over trials. In this behavioral experiment, subjects could learn the bias and thus showed reinforcement learning. With our computational model, we could model the learning process over trials. Particularly, the dependence on parameters of the reward function (Gaussian width) and the modulation of movement variance over time were similar in experiment and model.

[BibTex]

[BibTex]


no image
A Bayesian approach to empirical local linearizations for robotics

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)

Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a ``reasonable'' linear regime of the system, which can be defined from the Hessian at the point of the linearization -- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a ``reasonable'' local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. This approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.

link (url) [BibTex]

link (url) [BibTex]


no image
Do humans plan continuous trajectories in kinematic coordinates?

Hoffmann, H., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
The planning and execution of human arm movements is still unresolved. An ongoing controversy is whether we plan a movement in kinematic coordinates and convert these coordinates with an inverse internal model into motor commands (like muscle activation) or whether we combine a few muscle synergies or equilibrium points to move a hand, e.g., between two targets. The first hypothesis implies that a planner produces a desired end-effector position for all time points; the second relies on the dynamics of the muscular-skeletal system for a given control command to produce a continuous end-effector trajectory. To distinguish between these two possibilities, we use a visuomotor adaptation experiment. Subjects moved a pen on a graphics tablet and observed the pen's mapped position onto a screen (subjects quickly adapted to this mapping). The task was to move a cursor between two points in a given time window. In the adaptation test, we manipulated the velocity profile of the cursor feedback such that the shape of the trajectories remained unchanged (for straight paths). If humans would use a kinematic plan and map at each time the desired end-effector position onto control commands, subjects should adapt to the above manipulation. In a similar experiment, Wolpert et al (1995) showed adaptation to changes in the curvature of trajectories. This result, however, cannot rule out a shift of an equilibrium point or an additional synergy activation between start and end point of a movement. In our experiment, subjects did two sessions, one control without and one with velocity-profile manipulation. To skew the velocity profile of the cursor trajectory, we added to the current velocity, v, the function 0.8*v*cos(pi + pi*x), where x is the projection of the cursor position onto the start-goal line divided by the distance start to goal (x=0 at the start point). As result, subjects did not adapt to this manipulation: for all subjects, the true hand motion was not significantly modified in a direction consistent with adaptation, despite that the visually presented motion differed significantly from the control motion. One may still argue that this difference in motion was insufficient to be processed visually. Thus, as a control experiment, we replayed control and modified motions to the subjects and asked which of the two motions appeared 'more natural'. Subjects chose the unperturbed motion as more natural significantly better than chance. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no adaptation under such transformation.

[BibTex]

[BibTex]


no image
A Versatile Stair-Climbing Robot for Search and Rescue Applications

Eich, M., Grimminger, F., Kirchner, F.

In 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, pages: 35-40, October 2008 (inproceedings)

DOI [BibTex]

DOI [BibTex]

2006


no image
Learning operational space control

Peters, J., Schaal, S.

In Robotics: Science and Systems II (RSS 2006), pages: 255-262, (Editors: Gaurav S. Sukhatme and Stefan Schaal and Wolfram Burgard and Dieter Fox), Cambridge, MA: MIT Press, RSS , 2006, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-covexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. A first important insight for this paper is that, nevertheless, a physically correct solution to the inverse problem does exits when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on a recent insight that many operational space controllers can be understood in terms of a constraint optimal control problem. The cost function associated with this optimal control problem allows us to formulate a learning algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the view of machine learning, the learning problem corresponds to a reinforcement learning problem that maximizes an immediate reward and that employs an expectation-maximization policy search algorithm. Evaluations on a three degrees of freedom robot arm illustrate the feasability of our suggested approach.

link (url) [BibTex]

2006

link (url) [BibTex]


no image
Reinforcement Learning for Parameterized Motor Primitives

Peters, J., Schaal, S.

In Proceedings of the 2006 International Joint Conference on Neural Networks, pages: 73-80, IJCNN, 2006, clmc (inproceedings)

Abstract
One of the major challenges in both action generation for robotics and in the understanding of human motor control is to learn the "building blocks of movement generation", called motor primitives. Motor primitives, as used in this paper, are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. While a lot of progress has been made in teaching parameterized motor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this paper, we evaluate different reinforcement learning approaches for improving the performance of parameterized motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for robotics

Peters, J., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robotics Systems, pages: 2219-2225, IROS, 2006, clmc (inproceedings)

Abstract
The aquisition and improvement of motor skills and control policies for robotics from trial and error is of essential importance if robots should ever leave precisely pre-structured environments. However, to date only few existing reinforcement learning methods have been scaled into the domains of highdimensional robots such as manipulator, legged or humanoid robots. Policy gradient methods remain one of the few exceptions and have found a variety of applications. Nevertheless, the application of such methods is not without peril if done in an uninformed manner. In this paper, we give an overview on learning with policy gradient methods for robotics with a strong focus on recent advances in the field. We outline previous applications to robotics and show how the most recently developed methods can significantly improve learning performance. Finally, we evaluate our most promising algorithm in the application of hitting a baseball with an anthropomorphic arm.

link (url) DOI [BibTex]

link (url) DOI [BibTex]