SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements

Qianli Ma^{1,2}, Shunsuke Saito¹, Jinlong Yang¹, Siyu Tang², Michael J. Black¹

¹Max Planck Institute for Intelligent Systems, Tübingen ²ETH Zürich

anlim.github.io/SCALE

Goal

A model of pose-dependent clothed human shapes that have expressive geometry, are flexible to topological change, easy to render, and fast at inference.

Problem

Existing 3D representations cannot satisfy these requirements for modeling 3D humans in clothing.

	Articulation Support	Topology Flexibility	Fast Inference	
Meshes		×		
Implicit Surfaces	✓ / X			
Surface Patches	X			
Point Clouds	X			
SCALE (ours)				

References

- [1] Groueix et al. 3D-CODED: 3D Correspondences by Deep Deformation. ECCV 2018.
- [2] Yuan et al. PCN: Point Completion Network. 3DV 2018.
- [3] Prokudin et al. SMPLpix: Neural Avatars from 3D Human Models. WACV 2021.
- [4] Ma et al. Learning to Dress 3D People in Generative Clothing. CVPR 2020.
- [5] Deng et al. Neural Articulated Shape Approximation. ECCV 2020.

Our Approach

- Represent 3D clothed humans as dense point clouds.
- Structure the points into hundreds of articulated, local patches, decoded from local features.

Articulated Local Patches

Rendering SCALE

Results -

Quantitative and qualitative evaluation on CAPE [4] dataset:

	Chamfer- <i>L2</i> (×10 ⁻⁴ <i>m</i> ²) ↓			Normal Diff (×10 ⁻¹)↓		
	Blazer	T-shirt	Skirt	Blazer	T-shirt	Skirt
CAPE ^[4] (mesh)	1.96	1.37	N.A.	1.28	1.15	N.A
NASA ^[5] (implicit surface)	1.37	1.05	N.A.	1.29	1.17	N.A.
Ours (local patches)	1.07	0.89	2.69	1.22	1.12	0.94

