SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements Qianli Ma^{1,2}, Shunsuke Saito¹, Jinlong Yang¹, Siyu Tang², Michael J. Black¹ ¹Max Planck Institute for Intelligent Systems, Tübingen ²ETH Zürich anlim.github.io/SCALE ## Goal A model of pose-dependent clothed human shapes that have expressive geometry, are flexible to topological change, easy to render, and fast at inference. # **Problem** Existing 3D representations cannot satisfy these requirements for modeling 3D humans in clothing. | | Articulation
Support | Topology
Flexibility | Fast Inference | | |-------------------|-------------------------|-------------------------|----------------|--| | Meshes | | × | | | | Implicit Surfaces | ✓ / X | | | | | Surface Patches | X | | | | | Point
Clouds | X | | | | | SCALE (ours) | | | | | #### References - [1] Groueix et al. 3D-CODED: 3D Correspondences by Deep Deformation. ECCV 2018. - [2] Yuan et al. PCN: Point Completion Network. 3DV 2018. - [3] Prokudin et al. SMPLpix: Neural Avatars from 3D Human Models. WACV 2021. - [4] Ma et al. Learning to Dress 3D People in Generative Clothing. CVPR 2020. - [5] Deng et al. Neural Articulated Shape Approximation. ECCV 2020. # Our Approach - Represent 3D clothed humans as dense point clouds. - Structure the points into hundreds of articulated, local patches, decoded from local features. #### **Articulated Local Patches** ### Rendering SCALE ### Results - Quantitative and qualitative evaluation on CAPE [4] dataset: | | Chamfer- <i>L2</i> (×10 ⁻⁴ <i>m</i> ²) ↓ | | | Normal Diff (×10 ⁻¹)↓ | | | |---|---|---------|-------|-----------------------------------|---------|-------| | | Blazer | T-shirt | Skirt | Blazer | T-shirt | Skirt | | CAPE ^[4] (mesh) | 1.96 | 1.37 | N.A. | 1.28 | 1.15 | N.A | | NASA ^[5]
(implicit surface) | 1.37 | 1.05 | N.A. | 1.29 | 1.17 | N.A. | | Ours
(local patches) | 1.07 | 0.89 | 2.69 | 1.22 | 1.12 | 0.94 |