Header logo is am


6 results (BibTeX)

2016


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (proceedings) Accepted

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

pdf link (url) DOI [BibTex]

2016

pdf link (url) DOI [BibTex]

2014


no image
Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

arXiv preprint, March 2014, clmc (misc)

Abstract
Abstract: Locally weighted regression was created as a nonparametric learning method that is computationally efficient, can learn from very large amounts of data and add data incrementally. An interesting feature of locally weighted regression is that it can work with ...

Web link (url) [BibTex]

2014

2008


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

2008 IEEE International Conference on Robotics and Automation, pages: 819-824, 2008 (proceedings)

DOI Project Page [BibTex]

2008

DOI Project Page [BibTex]

2006


no image
Programmable central pattern generators: an application to biped locomotion control

Righetti, L., Ijspeert, A.

Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006 (proceedings)

DOI Project Page [BibTex]

2006

DOI Project Page [BibTex]